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DISJUNCTIV E PROG RAMMING

by

Egon Balas

1. Introduction

This paper reviews some recent developments in the convex analysis

approach to integer programming. A product of the last four years, these

developments are based on viewing integer programs as disjunctive programs,

i.e., linear programs with disjunctive constraints. Apart from the fact

that this is the most natural and straightforward way of stating many

problems involving logical conditions (dichotomies, implications , etc.),

the disjunctive programming approach seems to be f ru i t fu l  for zero-one

programming both theoretically and practically. On the theoretical side,

it provides neat structural characterizations which offer new insights.

On the practical side , it produces a variety of cutting planes with desirable

properties, and offers several ways of combining cutting planes with branch

and bound .

The line of research that has led to the disjunctive programming approach

originates in the work on intersection or convexity cuts by Young [40], Balas [21,

Clover [23] , Owen [36] and others (see also [13] , [24], [42)). This geometrically

motivated work can be described in terms of intersecting the edges of the cone

• originating at the linear programming optimum x wi th the boundary of some convex —

set S, whose interior contains x but no feasible integer points , and using the

hyperplane defined by the intersection points as a cutting plane. An early

forerunner of this kind of approach was a paper by b ang Thy [29].

In the ear ly 70’s, research on intersection or convexity cuts was

pursued in two main directions. One, typified by [23], (18), [4), was
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aimed at obtaining stronger cuts by includ ing into S some exp l ici t ly or

implicitly entnnerated feasible integer points . The other, initiated by [3],

brought into play polarity, in particular outer polars (i.e., polars of the

feasible set, scaled so as to contain all feasible 0-1 points in their

boundary), and related concepts of convex analysis, like maximal convex

extensions, support and gauge functions, etc. (see also [5], [15],

[191). Besides cu tt ing planes , this second direction has also produced

(see [5  ] , [ 6  ] )  a “constraint activating” method (computationally untested

to date) based on the idea of “burying” the feasible set into the outer polar

(without using cuts), by activating the problem constraints one by one, as

needed . This research has yielded certain insights and produced reasonably

strong cutting planes ; but those procedures that were imp lemented (and , by the

way, very few were) turned out to be computationally too expensive to be

practically useful.

In 1973 Glover [25 ] discovered that intersection cuts derived from a

convex polyhedron S can be strengthened by rotating the facets of S in

certain ways, a procedure he called polyhedral annexation. This was an

important step toward the development of the techniques discussed in this

paper. The same conclusions were reached Independently (and concomitantly)

in a somewhat different context by Balas [7 1. The new context was given

by the recognition that intersection cuts could be viewed as derived from a

disjunction. Indeed , requiring that no feasible integer point be contained

in the interior of 5 , is the same as requiring every feasible integer point

to satisf y at least one of the inequal i t ies  whose complements define the

supporting halfspaces of S. This seemingl y innocuous change of perspective

proved to be extreme ly f r u i t f u l .  For cn e thing i t  led natural ly  and

immediately to the consideration of disjunctive programs in their generality

[8  J , [9 1, and hence to a character iza t ion  of all  the valid inequalities
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for an integer program. By the same token, it offered the new possibility

of generating cuts specially tailored for problems with a given structure.

Besides , it offered a unified theoretical perspective on cutting planes

and enumeration, as well as practical ways of combining the two approaches.

Finally, it vastly simplified the proofs of many earlier results and opened

the way to the subsequent developments to be discussed below.

Besides the above antecedents of the disjunctive programming approach

there have been a few other papers concerned with linear (or nonlinear)

programs with disjunctive constraints [26], [27]. The paper by Owen [36]

deserves special mention , as the first occurrence of a cut with coefficients of

different signs . However , these efforts were focused on special cases.

The main conceptual tool used in studying the structural properties

of disjunctive programs is polarity. Besides the classical polar se ts,

we use a natural generalization of the latter which we call reverse polar

sets [10]. This connects our research to the work of Fulkerson [20], [21],

[22], whose blocking and antiblocking polyhedra are close relatives of the

polar and reverse polar sets. There are also connections with the work of

Tind (39] and Araoz (1]. One crucial difference in the way po!ars and

reverse polars of a polyhedron are used in our work, versus that of the above

mentioned authors , is the fact that we “dualize” the reverse polar of a

(disjunctive ) set S, by representfng it in terms of the inequalities (of the

disjunction) defining S, rather than in terms of the points of S. It is

precisely this element which leads to a linear prograzmuing characterization

of the convex hull of feasible points of a disjunctive program.

Except for the specific applications described in sections 7 and 8,

which are new, the results reviewed here are from [ 8 1 , [9 1, (101, [141.
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We tried to make this review self-contained , giving complete proofs for

most of the statements. Moat of the results are illustrated on numerical

examples. For further details and related developments the reader is

referred to the above papers, as well as those of Glover [25],

Jeros low [32] , and Balas [11) . Related theoretical developments are also

to be found in Jeroslow [30], (31], Blair and Jeroslow [lll,Zeme l [41] ,

while some related computational procedures are discussed in Balas [12].

This paper is organized as follows. Section 2 introduces some basic

concepts and terminology, and discusses ways of formulating disjunctive

programs (DP). Section 3 contains the basic characterization of the family

of valid inequalities for a DP, and discusses some of the implications of

this general princip le for deriving cutting planes. Section 4 extends the

duality theorem of linea r programming to DP. Section 5 discusses the bast~

properties of reverse polars and uses them to characterize the convex hull

of a disjunctive set (the feasible set of a DP). It shows how the facets of

the convex hull of the feasible set of a DP in n variables , defined by a dis-

junction with q terms , can be obtained from a linear program with q(n + 1)

constraints

In section 6 we address the intriguing question of whether the convex

hull of a disjunctive set can be generated sequentially, by imposing one

by one the disjunctions of the conjunctive normal form, and producing at

each step the convex hull of a disjunctive set with one e1~ nentary disjunction.

We answer the question in the negative for the case of a general DP or a

general integer program , but in the positive for a class of DP called facial,

which subsumes the general (pure or mixed) zero-one program, the linear

complementarity problem, the nonconvex (linearly constrained) quadratic

program , etc.

-

~

—-

~

---- — . -
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The first 6 sections treat the integrality constraints of an (otherwise)

linear program as disjunctions. When it comes to generating cutting p lanes

from a particular noninteger simplex tableau, the disjunctions that can be

used effectively are those involving the basic variables. Section 7 discusses

a principle for strengthening cutting planes derived from a disjunction, by

using the integrality conditions (if any) on the nonbasic variables. Section 8

illustrates on the case of multiple choice constraints how the procedures of

sections 3 and 7 can take advantage of problem structure. Section 9 discusses

some ways in which disJunctive programming can be used to combine branch and

bound with cutting planes. In particular , if LPk, k € Q , are the subproblems

associated with the active nodes of the search tree at a given stage of a

branch and bound process applied to a mixed integer program F, it is shown

that a cut can be derived from the cost rows of the simplex tableaux associated

with the problems LPk, which provides a bound on the value of P, often

consideiably better than the one available from the branch and bound process.

Finally, section 10 deals with techniques for deriving disjunctions from

conditional bounds. Cutting planes obtained from such disjunctions have been

used with good results on large sparse set covering problems 

- - -  - -
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2. Linear Programs with Logical Conditions

By disjunctive programming we mean linear programming with disjunctive

constraints. Integer programs (pure and mixed) and a host of other non-

convex programming problems (the linear complernentarity prob lem, the general

quadratic program, separable nonlinear programs, bimatrix games, etc.) can

be stated as linear programs with logical conditions. In the present context

“logical conditions” means statements about linear inequalities , involving

the operations “and” (A, conjunction--sometimes denoted by juxtaposition),

“or ” (V, disjunction), “complement of” (-,, negation). The operation

“if.. .then” (=
~

-
, implication) is known to be equivalent to a disjunction.

The negation of a conjunctive set of inequalities is a disjunction whose terms

are the same inequalities. The operation of conjunction applied to linear

inequalities gives rise to (convex) polyhedra l sets . The disjunctions are

thus the crucial elements of a logical condition (the ones that make the

const :airit set nonconvex), and that is why we call this type of problem a

disjunctive program.

A disjunctive program (DP) is then a problem of the form

mm [cx lAx ~ 
a0, x 

~ 
0, x c  L)

where A is an m x n  matrix , is an rn-vector, and L is a set of logical

conditions. Since the latter can be expressed in many ways, there are

many different forms in which a DP can be stated . Two of them are

fundamental.

The constraint set of a DP (and the DP itself) is said to be in

disjunctive normal form if it is defined by a disjunction whose terms do

not contain further disjunctions ; and in conjunctive normal form, if it is

defined by a conjunction whose terms do not contain further conjunctions. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The disjunctive norma l form is then

h hA x  a~

x > 0

whi le the conjunctive normal form is

Ax > a0

(2.2) x > 0

V (d’x � d io), J s S
i€Q~

or , alternatively,

A x > a  r -1 I- 1
(2.2 ’) 

— 0 A j V (dix > d~ 0
) A . . • A V (d ix � dio)Ix 

~ 
0 [icQ1 J L”’~lsl J

Here each d m is an n-vector and each d~0 a scalar , while the sets Q and

~~ 
j  eS , may or may not be finite. The connection between the two forms is

that each term of the disjunction (2.1) has , besides the in+n  inequalities

of the system Ax > a0, x > 0, precisely one inequality d tm x > d i0, i

from each disjunction j  e S  of (2 .2) ,  and that all distinct systems

Ahx > a~ , x > 0 with this property are present among the terms of (2.1); so

that, if Q (and hence each Q4, j  € S )  is finite, then IQI = I rr Q.
~~~~, 

where
J iss ~

11 stands for cartesian product. Since the operations A and V are distributive

with respect to each other [i.e., if A , B, C are inequalities, A A (B V C) =

AB V AC, and A V (3C) = (A V B) A (A V C)] ,  any logical condition involving

these operations can be brought to any of the two fundamental forms, and each -

of the latter can be obtained from the other one.

We illustrate the meaning of these two forms on the case when the DP is

a zero-one program in n variables. Then the disjunctive normal form (2.1) is

V (Ax>0 ,x > 0,x = x 1’)
hsQ
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whert ~~~~~~ is the set of all 0-]. points, and IQ I — 2’~; whereas the

conju Active normal form is

Ax > 0, x > 0, (Xj  0) V (X
j  = 1), j  =

Once the inequalities occurring in the conjunctions and/or disjunctions

of a DP are given, the disjunctive and conjunctive normal forms are unique.

It is a fact of crucial practical importance , however , that the inequali t ies

c - :~ ssing the conditions of a given problem can be chosen in more than ;.~e

w--~
’1- . For instance, the constraint set

3x1 + x2 
- 2x3 + x4 < 1

x1 + x ~~+ x3 + x 4 < 1

= O o r  I , j  = l ,...,4 ,

~~~~ p~
-
~ 

in disjunctive normal form, becomes a disjunction with 2~ — 16 Ler-~s ;

but the same constraint set can also be expressed as

3x
1 
+ 

~
C2 

- 2x3 + x
4 

< 1

4 x = 1
V V (x 0, Yj )

i=l x~~= 0 , j , & i

which gives rise to a disjunction wi th only 5 terms .

~

-- . - __
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3. The Basic Principle of Disjunctive Programming

A constraint B is said to be a consequence of, or implied by, a constraint

A, if every x that satisfies A also satisfies B. We are interested in the

family of inequalities implied by the constraint set of a general disjunctive

program (DP). All valid cutting planes for a DP belong of course to this

family. On the other hand, the set of points satisfying all the inequalities

in the family is precisely the convex hull of the set of feasible solutions to

the DP • A characterization of this family is given in the next theorem,

which is an easy but important generalization of a classical result. Let

x c R~, o€R ~, a0 
c R , A1

~ cR~~ , a~~cR~~, h cQ (not necessarily finite) and

let a~ be the j-th column of A
h
, h €Q, j CN [l,...,n).

Theorem 3.1. The inequality ox > a0 is a consequence of the constraint

h hA x � a0
x > O

if and only if there exists a set of e
h
€R% eh > 0 , h€ Q *, satisfying

(3.2) a> ehAh and < 8h h  , Vh c Q*

where Q is the set of those h eQ such that the system A
h
x 
~ 
a0, x > 0 is

consistent.

Proof. ax > cy0 is a consequence of (3.1) if and only if it is a

consequence of each term hc Q * of (3.1). But according to a classical result

on linear inequalities (see, for instance, Theorem 1.4.4 of [37], or

Theorem 22.3 of [36]), this is the case if and only if the conditions stated

in the theorem hold.

Remark 3.1.1. If the i-th inequality of a system heQ * of (3.1) is

replaced by an equation, the i-tb component of is to be made unconstrained . 

- --~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~- - -~~~~~~~~~~~~~~~~~~~~~~~
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If the variable X
j 
in (3.1) is allowed to be unconstrained , the j - th

inequality of each system a > OhAb
, h s Q* is to be replaced by the corre-

sponding equation in the “if” part of the statement .

With these changes, Theorem 3.1 remains true.

An alternative way of stating (3.2) is

aj  > sup~~eha~~, jeN

(3 3) hcQ

hha0 < inf
~~

O a 0,
heQ

Since Q* 
~ Q, 

the if part of the Theorem remains of course

*valid if Q is rep laced by Q.

Since (3.3) defines ~fl the valid inequalities for (3.1), every

valid cutting plane for a disjunctive program can be obtained from (3.3)

by choosing suitable multipliers . If we think of (3.1) as being expressed

in terms of the nonbasic variables of a basic optimal solution to the linear

program associated with a DP, then a valid inequality ax � a0 Cuts off the

optimal linear programming solution (corresponding to X
j 

— 0, j C N) if and

only if a0 > 0; hence a0 will have to be fixed at a positive value. Inequalities

with a0 < 0 may still cut off parts of the linear. prograu~ ing feas ible set, but

not the optimal solution x = 0.

The special case when each system A
hx � a~~, h cQ, consists of the

single inequality a
h
x 
~ 
a,,~ (ah a Vector , ahO a positive scalar) deserves

special mention. In this case, choosing multipliers 0h = lI%o, h eQ . we

obtain the inequality

(3.4) E (max a~/%~ ) x > 1
JcJ heQ ~‘



- _ -__ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— ---.--- -.---_-_ _ -- -----_ - _ - - - -
~~

—11—

which (for Q finite) is Owen ’s cut (36]. It can also be viewed as a

slightly iuproved version of the intersection cut from the convex set

S — ( x l x~~~ahO , h cQ 3 ,

which has the same coefficients as (3.4) except for those (if any) j € 3 such

that a~ < 0, Vh sQ. For the latter, the intersection cut from S has zero

coefficients whereas the corresponding coefficients of (3.4) are negative.

Whenever all, the coefficients of (3.4) are positive (in terms of

intersection cuts, this corresponds to the case when S is bounded), (3.4)

is the strongest inequality implied by the disjunction V (ahx � a~~); inhsQ
the presence of negative coefficients, however, (3.4) can sometimes be

further strengthened.

Due to the generality of the family of inequalities defined by (3.3),

not only can the earlier cuts of the literature be easily recovered by an

happropriate choice of the multipliers 9 (see [8] for details),

but putting them in the form (3.3) indicates, by the same token, ways in

which they can be strengthened by appropriate changes in the multipliers.

A significant new feature of the cutting planes defined by (3.3)

consists in the fact that they can have coefficients of different signs.

The classical cutting planes, as well as the early intersection/convexity

cuts and the group theoretic cutting planes (including those corresponding to

facets of the corner polyhedron), are all restricted to positive coefficients

(when stated in the form > , in term$ of the nonbasic variables of the tableau

from which they were derived). This important limitation, which tends to

produce degeneracy in dual cutting plan~ algorithms, can often be overcome

in the case of the cuts obtained from (3,3) by an appropriate choice of multi-

pliers.

- -  ~_,.e._= ——

_ _ _ _ _ _
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Another important feature of the principle expressed in Theorem 3.1

for g.n.rating cutting plan.. I. the fact that in formulating a given integer

program a. a disjunctive program, one can take advantage of any particular

structure the problem may have. In section 7 we will, illustrate this on

some frequently occurring structures. We finish this section by an .rample

of a cut for a general mixed integer program.

Example 3.1. Consider the mixed integer program whose constraint

set is

x1 — .2 + .4(—x3) + l.3(-x4) 
- .0l(-x5) + .07(-x6)

*
2 

— .9 - •3(-x3 ) + .4(-x4) - .04(-x5) + .1 (-x6)

~ 
0, j — l,...,6, integer, j —

This problem is taken from Johnson’s paper [35] , which also lists six

cutting planes derived from the extreme valid inequalities for the associated

group problem:

.75 x3 + •875x~ + .0l25x5 + .35 *6 > 1

.778x3 + .444x4 + .40 x5 + .1h z6 > 1

•333x3 + •667x4 + •033x5 + .35 x6 > 1

.50*3 + x4 + .40 x5 + .25 x6 2 l

.444x3 + .333x4 + .055x5 + 
~~~~~ ~ 

1

.394x3 + .636x4,+ .346x
5 + .155x6 ~ 

1 . 
-

The first two of these inequalities are the mixed-integer Gomory cuts

derived from the row of x~ and x2 respectively. To show bow they can be

improved , we first derive them as they are • lb do this , for a row of the

form -

X
j 

— a~0 + E a~ (-x )
.3 .1 .1

, % ~~~~~~~ ~~~~~ ¶~
. 

-~~~ - ~~~ 2 ~ - . • ,‘- .
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withx~ integer-constrained for .1 e J~, continuous for 3 • 
~2’ 

one defines

• a~~— (a1,~], 3 .JUcOJ , and 
~io 

— ff0.

i s31 C i J 1 I f ~0 �f ~13
— ~~ — 1  it 3

~ 
Cj c J i I f io < f i jJ

C
ii - .1132

Then every x which satisfies the above equation and the integrality

constraints on 3 e31U(i), also satisfies the condition

Yj — 9io + E ~~j(-xj) Y~ integer

For the two equations of the example, the resulting conditions are

y1 — .2 — .6(~x3) - .7(~x4) — .01(—x~) + •07(_x6), y1 integer

- 
— .9 + .7(—x3

) + .4(-x4) 
- •04(-x5) + .1 (~

x6), ~i 
integer.

Since each y~, is integer-constrained , they have to satisfy the

disjunction Yj < 0  V y1 2 1. Applying the above theorem with multipliers

— l/a~~ then gives the cut (3.4) which in the two cases i — 1,2 is

and

.!.~~x3 + 4x 4
+.t~~~x5 + 4 x6 2 1

These are precisely the first two inequalities of the above list.

Since all cuts discussed here are stated in the form 2 1, the smaller

the 3-tb coefficient , the stronger is the cut in the direction 3. We would

thus like to reduce the size of the coefficients as much as possible.

Now suppose that instead of y
1 ~ 0 V ~1 ~ 

1, we uss the disjunction

- I y > iy1_
~Xl, ~ 

0

which of course Li also satisfied by every feasible x.

P ~It* ~i~~1 
r~ 

‘
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Then, app lying Theorem 3.1 with multipliers 5 , 5 and 15 for y 1 < 0,

“1 ~ 
1 and x1 ~ 

0 respectively, we obtain the cut whose coefficients

are

f  5 x (— .6) 5 x .6+15 x (— .4) ~Lmax 
~ 5x .2 ‘ 5x .8+l5 x (-.2) J 

=

5 5 x (-.7) 5 x .7+15 x (-1.3) 
— 3 5max 

~ 5x.2 ‘ 5x. 8+15 x (- .2) 
-

f5x (-.Ol) 5x .0l+ l5x.0k 2max 
~ 5 x .2  ‘ 

~~x.8+l5 x (-.2)

ma 1 5 X .07 5 X ( ‘ .07)4 15 X (-‘.07) 
~1 5x .2 ‘ 5x.8+l5x (-.2) J

that is

-‘3x3 
- 3.5x4 + .2x5 + .35x6 ~ 

1

The s~mi of coefficients on the left hand side has been reduced from

1.9875 to —5.95.

Similarly, for the second cut, if instead of y2 
< 0 V y2 � 1 we use

the disjunction

1y2 < 0
’
~

V Cy2 ?l) ,2

with multip liers 10, 40 and 10 for y2 < 0, x1 � 0 and y2 ~ 1 respectively,

we obtain the cut

-7x3 - 4x4 + .4x5 - x6 ~~ 
1 .

Here the sum of left hand side coefficients has been reduced from

1.733 to —11.6.

4 -



- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~--~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - - -~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~ -

~~~~~~~~~~~~

-15-

4. Duality

In this section we state a duality theorem for disjunctive programs ,

which generalizes to this class of problems the duality theorem of linear

progranining.

Consider the disjunctive program

* - m m cx
0

(AhX > bh 1
(P) 

—

hsQ x > 0  j

where A~’ is a matrix and b~’ a vector, ~ hcQ.

We define the ~~, 
of (P) to be the problem

w .max w
0

- 
hbh ~ o

(D) 
h Q

b 
~ o

The constraint set of (D) requires each u
i’, heQ, to satisfy the corresponding

bracketed system, and v to sattsf y each of them.

- > bb, x> 0), ~~ - (xlAhx � o, x > 0);

uh lU
bAb < c , U1’ 2 0) Ub (~

h 
~u
1’A1’ < 0 , ~~ ~~~ 

o).

further, let

— (h IQIX1’
# 0) 

-

, Q~~~~ 
- ChcQ lU ~, 

,~ 
0) .

• 1

—— .-- - -~~~~~~~ —-_____ _  — -- --‘ -
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We will assume the following

Regularit y condi tion :

i.e . ,  if (P) is feasible and (D) La infeasible, then there exists hcQ such that

x1~ ,‘ 0, U
1’ 

— 0.

Theorem 4.1. Assume that (P) and (D) satisfy the regularity condition .

Then exactly one of the following two eituations holds.

1. Both problems are feasible; each has an optimal solution and

z — V .o 0

2. One of the prob lem. is infeasible; the other one either is

infeasible or has no finite optimum.

Proof. (i) Assume that both (P) and (D) are feasible. If (P) has no

finite minimum , then there exists haQ such that IC
1’ ~ 

0 md x I such

that cx < 0. But then U
1’ 

— 0, i.e., (D) in infeasible; a contradiction.

Thus (P) has an opt imal solu tion, say x. Then the inequality cx ? z

is a consequence of the constraint set of (P); i.e., x $ X~ implies cx ~ 
z ,

~ heQ. But then for .11 hcQ*, there exists u1’eU
1’ 

such that u~
’b~
’ 
~ 

z .

Further , since (D) is feasible , for each h Q\Q* there exists G1’eU~~ and

s t iwt~ X%~ 
= 0 (r~r h€Q\Q*) , there also exists U I U

1’ 
such that 1’bh > ~

Y~ heQ\Q*. But then, defining

u1’Q~) - 
~h + ~ 1’, h Q \Q*

for X sufficiently large, u1’(X)eU1’, u~
’U)b1’ 2 z , ~~~ h$Q\Q*.

Hence for all hcQ , there exist vectors u1~ satisfying the constraints

of (D) for w — To show that this is the maximal value of w, we note

chat since is optima l for (P), there exists h€Q such tha t

~

- -- — — --- -

~

--

~ 

—-~~~~ -~~~~~---~~~--- -----~~~~~~~ -
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cx — min (cxlx C

But then by linear programing dua lity,

— h h , hcx — max (u b iu cu1’)

- max[wiw - uhbh < 0  u c u _n )

mix Cvi A (w - ut’b1’ <0 , u~~U1’
))

heQ

i.e., w < s , and hence the maximum value of w is w = z
— 0  0 0

(ii) Assume that at least one of (P) and (D) La infeasible. If (P)

is tnfeas~ble , IC_n — 0 Y hcQ; hence for all h€Q , there exists such

tha t u b  >0.

If (D) is infeasible , we are done . Otherwise , for each hcQ there

exists UCUh . But then defining

— a” + , heQ,

u1’(X) cU1’, heQ, for all X ~ 0, and since ~~b
h > 0, Y heQ, w can be made

arbitrarily large by increasing A ; i.e., (D) has no finite optimum.

Conversely, if (D) is infeasible , then ei ther (P) is infeasible and

we are done , or else , from the regulari ty cond ition, Q*\Q** ~ 0; and for

hcQ*\Q** there exists ~ e IC_n and x c sut h tha t cx ~ 0. But then

x(~i ) = i + ~~X

is a feasible solu tion to (P) for any ~ > 0, and since c < 0, z can be 
—

made arbitrarily small by increasing -~i; i.e., (P) has no finite optimum. 
- I 

-

Q.E.D.

_____
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The above theorem asserts that either situation t or sItuation 2 ho lds

for (P) and (D) if the regularity condition is satisfied. The following

Corollary shows that the condition is not only sufficient but also necessary.

Corollary 4.1.1. If the regularity condition does not hold , then

if (P) is feasib le and (D) is infeas ible , (P) has a finite minimum (i.e.,

there is a “duality gap”).

• Proof. Let (P) be feasible , (D) infeas ible , and Q*\Q** 0, i.e.,

for every h€Q*, let Ub # 0. Then for each heQ*, min (cxlx • x~) is finite,
hence (P) has a finite minimum. Q.E.D.

Remark. The theorem remains true if some of the variables of (P)

- 
- (of (D)] are unconstrained , and the corresponding constraints of (D) (of (P)j

are equali ties . 
-

The regularity arndition can be expected to hold in all but some

rather peculiar situations. In linear programming duality, the case when

both the primal and the dual problem is infeas ible only occurs for problems

whose coefficient matrix A has the rather special property that there exists

x ~ 0, u ~ 0, satisfying the homogeneous system

A x > 0  , x > 0

u A < 0  , u � 0

In this context, our regularity condition requires that, if the primal problem

is feas ible and the dual is infeas ible , then at least one of the matrices

A
h 
whose associated sets U

1’ 
are infeasible , should not have the above

mentioned special property.

Though most problems satisfy this requirement, nevertheless there

are situa tions when the regulari ty cond ition breaks down , as illustra ted by

the following example. 

- - - - -  - -- -- 
_ _ _ _
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Consider the disjunctive program

mm -x1-2x2 
-

2 0 -x1+x 2 ~
(P) -x1-x2 > -2 V x1-x2 ~ 

I

x1, x2 
•
~~ 0 x1,x2 ~ 

0

and its dual

max v

w +2u~ < 0

1 1
- -u1- u 2 <-1

(D) u~- u~ < -2

V -u~. < O  
- 

—-1÷1 ~ 
-l

• u -u2 < -2

u~ > 0, i = 1,2; k = 1,2

The primal problem (P) has an optimal solution x = (0 ,2),  with cx = -4;

whereas the dual problem’ (D) is infeasible . This is due to the fact that

Q\Q~~ = (2) and X2 
= 0 , U2 = 0, i.e., the regularity condition is violated .

Here

1 2 
0 1 2 

~~~~~~~~~~~~~~ -l

X2 =1x 
$ R+ 2 ~. 

‘ U2 =~~u e R+ 
u~-u~ < -2 
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5. The Convex Hull of a Disjunctive Set

Having described the family of all valid inequalities, one is of

course interested in identifying the strongest ones among the latter, i.e.,

the facets of the convex hull of feasible points of a disjunctive program.

[f we denote the feasible set of a DP by

I A1’x > a 1’ 
‘

~

F = *~x $R ” he 
— 0 ,

x � O  J.
then for a given scalar y~~, the family of inequalities ax � 

~ 
satisifed

by all XC F , i.e., the family of valid inequalities for the DP, is obviously

isomorphic to the family of vectors a e F ~ .,, where

•F( ~ 
(y -c R ~yx > ar0 , Yx -CF)

0

in the sense that ax �a is a valid inequality if and only if aeF#0 (a0)
In view of its relationship with ordinary polar sets, we call

F~ 
~ 
the reverse polar of F. Indeed , the ord inary polar set of F is

o nF = (yeR lyx~~ 1, YX IF )

and if we denote by F~ 
~ 
the polar of F scaled by a~, (i.e., the set

obtained by replacing 1 with a’0 in F), then F# .~ — -F°
- (as, (a 0

The size (as opposed to the sign) of a’
0 

is of no interest here. There-

fore we will distinguish only between the 3 cases > 0 (or a’
0 

1),

a 0 and < 0 (or a’~ = -1). (When the sign of makes no difference

or is clear from the context, we will simply write F#.) For a’0 < 0, as

mentioned above, F~ .~ is (the negative of) an ordinary polar set, whose‘cro,
properties are described in the literature. The most interesting case for

us, however, is a0 > 1, since this is the only case when the inequality

> cuts off the point x 0. This is why we need the concept of

reverse polars.
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For an arbitrary set Sc R~ we will denote by cl S, cony S, cone S,

tnt S and dim S , the closure , the convex hull, the conical hull , the interior

and the dimension of S, respectively. For a polyhedral set S~~R~ we will

denote by vert S and dir S the set of vertices (extreme points) and the set

of extreme direction vectors of S, respectively. For definitions and back-

ground material on these and related concepts (including ordinary polar sets),

the reader is referred tq (37 ]  or (38] (see also (281).

In [10] we showed that while some of the basic properties of polar sets

carry over to reverse polars, others can only be recovered in a modified form .

In the first category we mention (a) (XS )
# 

= 
f 

S# ; (b) S ~~T ~ S# 
~~T

# ;

(c) (SUT)
# 

= S
# f lT#, properties which follow from the definitions . In the

second one we state a few theorems, which are from [101 (see also 111).

Theorem 5.1. (i) If a0 
< 0, then ,~ 0 and

0 £ m t  ci cony S <~~> S”~ is bounded

(ii) If a’0 > 0, then

0 t ci cony S <=> s# — 0 <~~> S is bounded .

Proof. (i) follows from the corresponding property of the ordinary

nolar S° of S and the fac t that S = -S° .
~
.

- (a’0
) (a0~

(ii) For a
0 
> 0, if S ,& 0 there exists ~ e R~ such that xy ~

Yxc cl cc,nv S. But 0- y < a0, hence 0�cl cony S. Thus, if 0€ c l cot-tv S,

then = 0; and hence S is bounded. Conversely, if 0~~cl cony S, there

exists a hyperplane ax a’
0 
separating 0 from ci cony S, i.e., such that (a0>O and)

ax Yxeci cony S; which implies a cS
#
, i.e., S~ ~ 0. It also implies

Xa IS
#
,YX > 1, i.e., S# is unbounded. ))

From this point on, we restrict our attention to sets S whose convex hull is

polyhedra l and pointed . For the disjunctive set F , this condition is satisfied
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if Q is [ituite . Most of the results carry over to th e genera l case , b u t

i r ~~ N ; a r e  ; j  m l )  I i ’  r w i t  11 the above as~;t i r np t i ons

. .  if ci cony S is polyhed ral , so is  S~~.

Proof. Let -  u1,.. .,u and v1,. . •~~Vq 
be th2 vertices and extreme direr~~io~,

vec tors , re spec t i ve ly ,  of ci cony S. Then for every ycS there exist scalars
p

X
i 

0, i 1,. ..,p, � 0, j = l , . . . , q ,  with >2 X . 1 , such that
1=1

p
y >2 t i X . + ~ v .p..,

i~ 1 
1 1 

1=1 3 •~

and  it -  can  e a s i l y be seen that b r  arbitrary x , xy :- cr0 , ~ ycS , if and o n l y

if  xu .  c~~, i 1, . . .  , p ,  a nd xv . > 0 , j 1,... ,q. Thus

# n 
xu~ > ~~0 = . . .

S = x c R  /

xv . > 0 , j = 1,... ,qj

• ,J .i .e . ,  S is poi yhed r r u l . I I

The nest result describes the crucial involutory property of polar  and

reverse polar sets.

‘L~t c’or( ’)n 5 . ~~. Assum e S~ / 0. •J
~

c i cony S -i- ci con- - S if > 0
• 

S~~ = ci cone S if = 0

- ci cony (SU (0}) ~ <0.

Proof. S~~ = fx e Rt-
~ xy > a’0, Vy 6 S

#
J

xy > a’0 for all Y

x c R t-
~ u~Y � a ’0~ 

) =

v1y 2 0, i =
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But xy � a0 is a consequence of the system u~y > ~~~~ ~ 1,... ,p and

v~Y 2 0, i = l,...,q (consistent , since S~ ~ 0) ,  if and only if there exists

a set of $~ ~ 
0, i l,...,p, c~ > 0, i = l,...,q, such that

p q
(5.1) ’ = E e

~
u
~ 

+ E
i 1  i 1

with
p
E Q ~ a’

j al 0 
-

Since S# is polyhedral, so is S
H. Thus SH is the closed set of points

x € R° of the form (5.1) with e~ ~ 0, i = 1, . . .  ,p c~ ~ 
0 , i = 1,.. .,q, and

> 1  i fa ’0
>0

p
= 20 ifa’ = 0

i=1 1 0

<1 if~~0 < O .

But these are precisely the expressions for the three sets claimed in

the theorem to be equal to S~~ in the respective cases.

Corollary 5.3.1. ci cot-tv S = s(1)ns(1).

Proof. Follows immediatel y from the proof of Theorem 5 3 , where

Hx e S f lS  -l corresponds to ~~ e =

Example 5.1. Consider the disjunctive set

-x 1 -x 2 ~ -2

2 X
j• 20

F = x c R

x1 > 1  V x2 � i

illus trated in Fig . 5.1(a). Its reverse polars for a’0
l and c~~=-i are

the se ts

— — --•-- — .-~- — 

— — — — a— — 131.114
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l 2y1 2 1

F~1) — y€ R 2 

~ 
( ~1 1

y2 ~ 
1

and

F~_1) a y e R 2 
2y2 � -1 - 

yeR 2 ~ -1

~‘l 

: 

2)7
2 ~ -l 

-

shown in Fig. 5.1(b) and (c).

Finally, the sets FU corresponding to a’
0 

a 1 and a’
0 

= -l (shown in

Fig. S.2(a), (b)) are

> 1 -x1 -x2 � -2
F~~) 

a x C R~ x1 2 0 , F~
#

1) = x € x1 > 0

x2 � 0 x2 � 0

and their intersection (shown in Fig. S.2(c)) is

- -x1 -x2
�_ 2

F~~ flFH1 
= ci cony F x-c R

2 X
1

+X
2 ~~ 

1

~~ 20

• x2 � 0

-- - - - -- -- -- -~~~~~~~ - -  —---- - - - ----~~~~~~~~~~ 
--

~~~
—

~~~~~~~
-
~~~~~~~~~ 
-—

~~~~~
- -
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l)~~~~~~~~~~~

(0,0) (1,0) (2,0) (0,0) 
( — -

~~~ ,— f )

(a) (b) (c)

Fig. 5.1 
-

~~i J. 

(0,2) 

~~~~~~~~~~~~~ 

(0:2) 
)flF 1) = ci cony F

(0,0) (1,0) (0,0) (2 ,0) (0,0) (1,0) (2,0)

(a) (b) (c)

Fig. 5.2

The next theorem is needed to prove some other essential properties of

- reverse polars. 
-

### #
Theorem 5.4. S = S

Proof. If ( 0, this follows from the corresponding property of

ordinary polars. If a’0
> 0 and O ccl cony S, then S~ = 0, S~~ = Ri’, and

= 0 = S~. Finally, if a0 
> 0 and O ld cony S, then

= ci (cony S + cone S)
# (from Theorem 5.3)

= (ycR ’~Ixy > a ’0, Vx c cl (cony S + cone S))

= Cy€ R~
’Ixy >a ’o, YxCS ) a S

#
. II

~

-

~

---- ~~~— - --- --- - - - -  ~~~~— - --~~~--~~~ ~~~ -~~~~~~
- - - ---- ---- -~~~~~~~ - --~~~~~~~~~~~

--
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The above results can be used to characterize the facets of ci cony S.

To simplify the exposition , we will assume that S is a full-dimensiona l

pointed polyhedron , which implies that S~~ is also fuli-dimensional. For the

general case the reader is referred to (10]

We recall that an inequality itx 2 defines a facet of a convex set C

if mc 2 Yx € C, and mc = 11
0 
for exactly d affinely independent points x

of C, where d dim C. The facet of C defined by nx is then

fx cc I m c  = n
~1; but as customary in the literature, for the sake of brevity

we call mc 
~ 

itself a facet.

We proceed in two steps , the first of which concerns the facets of

- Theorem 5.5. Let dim S = n, and a’0 ~ 0. Then ax 
~~cr0 is a facet of

S~~ if and only if a ,& 0 is a vertex of S~ .

Proof. From Theorem 5.4, a ’€Rt-t is a vertex of S~ if and only if

( Huy >a ’  , Vu € vert S# / n 0c r € 8  = \ y C R
vy� 0 , Vv€ d irS

and a satisfies with equality a subset of rank n of the system defining S~ .

Further , a’ t~ 0 if and only if this subset of inequalities is not homogeneous

(i.e., at least one right hand side coefficient is a’0 
~& 0).

On the other hand, a’x 2 a~ is a facet of ~~~ if and only if (1) ax 2 c r0,

VxCSH, i.e., a ’€ S
#
; and (ii) ax = for exactly n affinely independent

points of S~~. But (ii) holds if and only if a’u = a’
0 
for r vertices u of

S 1
~, and c r y  = 0 for s extreme direction vectors v of ~~~ with r ~ I

(since a ~ 0) and r+s  2 n, such that the system of these equations is of

rank n.

_
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Thua the two sets of conditions (for a’ x 2 a0 to be a facet of S~~ and

for ~ to be 
a vertex of S#) are identical.

By arguments similar to the above proof , one shows that a’ x ~ 0 is a

facet of S~~ if and only if a’ is an extreme direction vector of 5
#~ Unlike

for ~t 0, the homogeneous inequality a’x 2 0 is a facet of S~~) 
if and only

if it is also a facet of S7l) [of S~~)
]~ due to the fact that every extreme

direction vector of S~1) 
is also an extreme direction vector of S~~ 1)

[of S~0)]~ and vice-versa.

Theorem 5.6. - Let dim S = ii , and a’
0 ~ 

0. Then ox � a0 is a facet of

ci cony S if and only if it is a facet of
(a0. 

-

Proof. (i) If > 0, the halfspace a’x ~ 
contains ci catty S ff and

only if it contains cl (conv S + cone S). If a’0 
< 0, the haifspace ax 

~ 
a0

contains ci cony S if and only if it contains ci cony (SU [0)). From Theorem 4.3,

in both cases OX 
~~ a’0 

is a supporting halfspace for ci cony S if and only

if it is a supporting halfspace for S~~
‘a’
0

(ii) Next we show that

(x€ cl cony S ax = a0) = CXCS ( )  OX =

The relation c follows frpm ci cony S ~ ~~~ (Theorem 5 .3). To show the
(0
0
)

converse, assume it to be false, and let x € S~~ ~\cl cony S satisfy 0x =

‘a’0, 0

From Theorem 5.3, x = Xu for some u€ cl cony S, and X > 1 if a0 > 0,

O < X < 1 if a’0 
< 0. In each case, ~ x 

a implies au — (i/X)a’x < a’0 
for

some u C ci cony S c S~~ ., contrary to the assumption that 0x ~ ~ ,‘~ x C ~~~ 
~0 ~a0i

- -  ~~~~~~~~-- - ---- - - ~~~- 
_ i ___
~~

__ 
~~~~~~~~~~- - -~~~~. - - -~~~~~~~~ - -



_______ — —

-28- -

By an argument similar to the above proof one can show that if ax ~

is a facet of ci cony S , then it is a facet of S~~ for both a 1 and(a0) 0

a0 
= -I. The converse, however, is not true, i.e., ax 2 0 can be a facet

of both S~~) and S71), without being a facet of s(1)ns (1).

We are now ready to characterize the facets of the convex hull of the

disjunctive set

I h hA x > an V — 0
F = < X € R heQ x � O

where Q is assumed to be finite, and F to be full-dimensional (for the

general case see [10]).

Theorem 5.7. ax 2 a’0~ with a0 ~ 0, is a facet of ci cony F if and

only if a’ ~ 0 is a vertex of the polyhedron

y 
~ 

e~
h, h€ Q *

a y € R~ for some 8h 2 0, h € Q*
(a’
0
, h hsatisfying e a0 2 a0

where is the set of those h e Q for which the system A
h
x 
~ 

a~, x ~ 
0, is

consis tent.

Proof. From Theorem 3.1, the se t F~ ., 
= [ycR t-’ Ixy �a ’0, VxcF) is of

‘a0,

the form claimed above. The rest is a direct application of Theorems 5.5

and 5.6. ~I
As for the case = 0, from the above conments it follows that if

ax > 0 is a facet of ci cot-tv F, then a’ ~ 0 is an extreme direction vector

of F# for all a’ • The converse is not true , but if a’ ~ 0 is an extreme
0

direction vec tor of F~ .~ for some a’0 (hence for all a’0) ,  then ox  2 0 is
~a’0, I

either a facet of ci cot-tv F, or the intersection of two facets, a’~x 2 a’0 and

c~ x > cr~ , with a’
1
+a’~~ 

a a’ and cr~ = -a’~~ ~ 0 (see (10] for the details).
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Since the facets of ci cony F are vertices (in the nonhomogeneous case)

or extreme direction vectors (in the homogeneous case) of the convex poly-

hedron F~ , they can be found by maximizing or minimizing some properly chosen

linear function on F#, i.e., by solving a linear program of the form

mm gy

* 
y _ 0 h~~ 2 0

P1(g,cy0) h h *$a 0 ~ a’0 
h€ Q

~~

or its dual

hmax
h€Q

h
* ~~~~~~~~ 

= g
P
2(g,cr0) heQ

~ 0 h e Q *

~~~? 0 ,

From Theorem 5.1, if a’0 < 0 then F~ 
~ 

# 0, i.e. , P~(g,a’0) is always
*feasible; whereas if a’0 > 0, then P
1(g,cr0) is feas ible if and only if

O jcl cony F. This latter condition expresses t~e obvious fact that an

inequality which cuts off the origin can only be derived front a disjunction

which itself cuts off the origin.

Two problems arise in connection with the use of the above linear

programs to generate facets of ci cony F. The first one is that sometimes

only Q is known , but Q* is not. This can be taken care of by working with

Q rather than Q*• Let Pk(g,00
) denote the problem obtained by replacing

with Q in P~(g,cy0), k = 1,2. It was shown in [103, that if P2(g,a0) has an

optimal solution ~ such that

(~b = 0 1 h~~~ 0) ~ h e Q *

I-

~~~~~~~~~~~~~~~~~~ 

- :  
~~~~~~~~~~~~~~~~~~~~~~~~ - — - - -
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then every optimal solution of P1(g,a’0) is an optimal solution of P~ (g,a’0).

Thus, one can start by solving P2(g,cr0). If the above condition is violated

for some h gQ\Q * then h can be removed from Q and P2(g,ctr
0
) solved for Q

redefined in this way. When necessary, this procedure can be repeated.

The second problem is that, since the facets of ci cony F of primary

interest are the nonhomogeneous ones (in particular those with a’
0 
> 0, since

they cut off the origin), one would like to identify the class of vectors g

for which P~ (g,cr
0
) has a finite minimum. It was shown in [10], that P~(g,~ 0

)

has a finite minimum if and only if Xg € ci cony F for some X > 0; and that,

should g satisfy this condition, ax 
~ 

is a facet of ci cot-tv F (where F

is again assumed full-dimensional) if and only if a’ = y for every optimal

solution G,ë) to P~ (g,cr0).

As a result of these characterizations, facets of the convex hull of

the feasible set F can be computed by solving the linear program P
1(g,a’0) or

its dual. If the disjunction defining F has many terms, like in the case

where F comes from the disjunctive progranming formulation of a 0-1 program

with a sizeabie number of 0-i conditions, P1(g,a’0
) is too large to be worth

solving. If, however, F is made to correspond to a relaxation of the original

zero-one program, involving zero-one conditions for only a few well chosen

variables, then P1(g,cr0) or its dual is practically solvable and provides the

strongest possible cuts obtainable from those particular zero-one conditions.

On the other hand, since the constraint set of P2(g,a0) consists of IQI
more or less loosely connected subsystems, one is tempted to try to approximate

an optimal solution to P2(g,a0) 
— and thereby to P

1(g,a’0) 
— by solving the

subsystems independently. Early computational experience indicates that

these approximations are quite good.

We now give a numerical example for a facet calculation.

~

- -

~ -
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gxauiple 5.2. Find all those facets of cl cony F which cut off the

origin (i.e., all facets of the form ax � 1), where F CR 2 is the disjunctive

set

F — F1 V F 2 V F 3 V F 4

with

F1 — (x~~-x1 +2x 2 > 6 , 0 < x 1 < i ,x2 >0)

F2 = ( x J  4x1 + 2x2 ~ 
11, 1 <x1 < 2.5, x2 ~ 03

F3 
= [x~~-x1 + x2 >-2, 2.5~~.x 1~~~4,x2 �03

F4 ( x (  x1+ x2 > 6 , 4 < x 1 < 6 , x2 �0J

(see Fig. 5.3).

After removi ng some redundant constraints, F can be restated as the

set of those x -€ R~ satisfying

14x +2x >i i l
(—x 1 +2x 2 >6 ) V ~~ 2 —  

~ V (x 1 + x 2 > 6 )
(-x 1 + x2 > -2.

J

and the corresponding problem P1(g,l) is

mitt g1y1 + g2y2

+ ~ 
0

1y2 — 2 91. > 0

- 4e ~+ e~ > 0

-2O~~- 4 
> 0

> 0

- 4 2 0

64 > 1

114 — 24 � 1

64 � i

4, 4, 4. 4 
2 o



Solving this linear program for g — (1,1), yields the optimal points

(y;8) ~~~~~~~~~ and (y ;9)  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

which have the same

y-component: 

~~~ 
These points are optimal (and the associated y is

unique) for all g > 0 such that g1 < 5g2. For g1 — 5g2, in addition to the

1 7  l 2 l 3 l~above point8, which are still optimal, the points (y;8) ;
f 1 7  7 2 l 3 l\and (y;B) = 

~~ ~~~~~~~~~ which again have the same y-component

y — (i
~~~~~)~~ 

also become optimal; and they are the only optimal solutions for

all g > 0 such that g1 > 5g2.

We have thus found that the convex hull of F has two facets which cut

1 (i 1\ 2 ( 17of f the origin, corresponding to the two vertices y = and y =

of

1 1
ix i + j x 2 2 1

1 7
~‘x 1 +~~~x~ ~ 

1

x~ (~~~( + * X ~
> f  - -

7
(o 3)~~~~~\t

\ ,J
ci Xt .~

.-x
2 �I

I iJ~~~ 1~~) X - 

-

(O ,O~ ti ,o~ (~~ O) (k ,o~ (~) O) - -

- Fig. 5.3

- —-- --~~~~--—  ---.-~~~~~ - -- ~~.
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6. Facial Disjunctive Programs

In this section we discuss the following problem [10]. Given a disjunctive

program in the conjun.~tive normal form (2.2), is it possible ~o generate the

convex hull of feasible points by imposing the disjunctions j CS one by one,

at each step calculating a “partial” convex hull, i.e., the convex hull of the

set def ined by the inequalities generated earlier , plus one of the disjunctions?

For ins tance , in the case of an integer program, is it possible to

generate the convex hull of feasible points by first producing all the facets

of the convex hull of points satisfying the linear inequalities , plus the

integrality condition on, say, x1; then adding all these facet-inequalities

to the constraint set and generating the facets of the convex hull of points

satisfying this amended set of inequalities, plus the integrality condition on

x2; etc. The question has obvious practical importance, since calculating

facets of the convex hull of points satisfying one disjunction is a consider-

ably easier task, as shown in the previous section , than calcula ting facets

of the convex hull of the full disjunctive set.

The answer to the above question is negative in general, but positive

for a very important class of disjunctive programs, which we term facial.

The class includes (pure or mixed) 0-1 programs .

The fact that in the general case the above procedure does not produce

the convex hull of the feasible points can be illustrated on the following

2-variable prob lent.

Example 6.1. Given the set

F0 (x e R2
1 -2x1 + 2c2 < 1, 2x 1 - 2x2 < 1, 0 < x1 < 2, -0 < x2 < 23

find F ci cony (F0flfx I x1,x2 integer)). 

- . -
. -~~~ ~~~~~~~~~---.~~~
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Denoting

F1 — c l cony (F0fl (x1x1 integer)), F2 
= cI cony (F1fl(x~~

x2 
integer)),

the question is whether F2 
F. As shown in Fig. 6.1, the answer is no,

since

2x 1 - x2 > O ~I -x + x 2 0
) -2x1 +3x2 2O

~
‘2 -~~ x , while F - x 0 < x 1~~~2

-2x1 + x2 � 2

I 0<x 2 <2
2x1 -3x 2 ?-2

If the order in which the integrality constraints are imposed 
is

reversed , the outcome remains the same.

F d~~~~(~~iLx!x~ 
4ç~e~)

— ~ J I 11) . (
~~J I 

_______ _______ ~2,l)

(o,i~ 
(Z,i) (~) /. 7

1 
(2,~~)

(2,0)

r ixi~~44)
(i~l1

(of I /
“ ~~~ ~ (UI) /</) -‘~~‘)

(o ,o) (c .) ~~~~~ - (0,0) (‘~)

Fig. 6.1

:t_

~~~~ 

~_± 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:--—
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Consider a disjunctive program stated In the conjunctive normal form

(2.2), and denote

F0 (x cR ~~t A x  > a0, x >  0)

The disjunctive program (and its constraint set) is called facial if

every inequality d~x ~ 
d~0 that appears in a disjunction of (2.2), 

defines

a face of F0; i.e., if for all i e Q~ j eS , the set

F0fl(x I dix 2 d 4 0 ]

is a face of F0. (A face of a polyhedron P is the intersection of P with

some of its boundary planes.)

The class of disjunctive programs that have the facial property includes

the most important cases of disjunctive programming, like the 0-1 prograimning

(pure or mixed), nonconvex quadra tic programming, separab 1~ programming, the

linear coinpiententarity problem, etc.; but not the general integer programming

problem, as illustrated above. In all the above mentioned cases the

inequalities d
i
x > d~0 of each disjunction actually def ine facets, i.e.,

(d - 1)-dimensional faces of F 0, where d is the dimension of F0.

Another property that we need is the boundedness of F0. Since this can

always be achieved , if necessary , by regularizing F 0, its assumption does

not represent a practical limitation.

Theorem 6.1. Let the constraint set of a DP be represented as

F (xCF 0 I V (d’x > d ~0
) ,  jcs )

t£Q~

where

F0 — [x€R ~~IA x > a 0, x>0)

For an arbitrary ordering of S, define recursively



— CODV [ V (F
3 1

fl[x Id 1~-~ 
,‘ a •

isQ
i

If F is facial and F0 is bound , cU e t

— C-)flV )‘

The proof of this theorem [l0~ uses the fo1lowis~ ~~~~~ ~

Lemma 6.1.1. Let 
~l’~ ’

~~’~ r 
bt a finite set -~~~~ ,.~lyto~ts ~bours~ed

polyhedra) , and P = u
h—i

Let H+ fxcR ’1 Id
1x < di0} !e an ~~~~~~ ~~~~~ ttaltspa ~~ , ~~,: ‘

U — ~x cR ’1 Id ’x — d
10) 

its defining hyperplene.

I f P c . H+, then

Rflconv P — onv ,~ t ,’I0)

Proof. Let H f l  cony P # 0 (otherwise the Lemma holds trivially).

Clearly, (HflP) c (Hflconv P), and therefore

A
cony (HflP) c cot-tv (Hflconv P) — Rflconv ~‘

To prove ~~, let ~~~~~~~~ be the vertices of all the po ytopes

Ii = 1,...,r. Obviously, p is finite, cony Pta closed , and

vert cony P c ( U vert Then
h—i

i 
p

x CHflconv P
~~~

d x = d
~O

andx E X k
uk ,

k-i

with

p

k-i

Further, P cH+ implies dtuk <d jo, k l,...,p. We claim that in the above

expression for x, if > 0 then dtuk d~~. To show this, we assume there

exist > 0 such that d1uk < d 10. Then
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i i p p
d x a d ( E 1k”k~ 

< d~0( E Xk)k.i k—i

a d~0 ‘

a contr idiction. Hence is the convex combination of points u~~cHnP , or

x s cony (H flP). II
m other relation to be used in the proof of the theorem , is the fact

t%ac for st~ it..ary S1, S2c9
t-t-,

~~ony (cony S1 Uconv S2
) — cony (S1US2)

Proo f ot Theorem 6.1. For j — 1, the statement is true from the

definitions and the obvious relation

V (F~~fl(x d1x 
~ 

d10)) — (X~~F0 V (d
i
x? dio))j ag1

L To prove the theorem by induction on j, suppose the statement is true

for j  — l,...,k. Then

— cony [ ( fl(x d~x 
~ 

d~0))] (by definition)

= cony [ V ((x ~d
tx > d~0) fl cony (xcF 0 V (dix? dio), jicQ~~1 icQ

(f r om the assumption)

— cony ( V cony (fx ld~
x > d~0) fl Cx cF0 V (dtx 2 d10), j — 1,...,kJ)]

(from Lenuna 6.1.1)

— cony [( V (x Id 1x 2 d10)) fl Cx CF 0 V (d~x >  dio), j 
a

icQJ&l
(from (6. 1))

— cony (xcF
0 I V (d~x ?d~0). j — 1,...,k+1) , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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i.e., the statement is also true for j — k + 1. ~

Theorem 6.1 implies that for a bounded facial disjunctive program with

feasible set F, the convex hull of F can be generated in IsI stages, (where

S is as in (2.2) ) ,  by generating at each stage a “partial” convex hul l ,

namely the convex hull of a disjunctive program with only one disjunction.

In terms of a 0-1 program, for instance, the above result means that

the problem

mitt (cx l A x >b , 0 < x < e , Xj a Oor 1, j — l,...,n)

where e = (l,...,1), is equivalent to (has the same convex hull of its

feasible points, as)

(6.2) mm tcxIAx ?b , O < x ~~~e, Xtx > cr~0~ iCR1. X~ = 0 or 1, j 2,...,n)

where a
tmx 2 i cH 1, are the facets of

— conv (x IA x>b , O < x < e ,x1
— O o r l)

In other words, x1 is guaranteed to be integer-valued in a solution of (6.2)

although the condition — 0 or 1 is not present among the constraints of

(6.2). A 0-1 program in n varia bles can thus be replaced by one in n-i

variables at the cost of introducing new linear inequalities. The inequalities

themselves are not expensive to generate, since the disjunction that gives

rise to them (x1 = 0 V x1 — 1) has only two terms. The difficulty lies rather

in the number of facets that one would have to generate, were one to use this

approach for solving 0-1 programs. However, by using some information as to

which inequalities (facets of a “partial” convex hull) are likely to be

binding at the optimum, one might be able to make the above approach efficient

by generating only a few facets of the “partial” convex hull at each iteration.

This question requires further investigation. For additional results on

facial disjunctive programs see [33), [343 .
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7. - Disjunctive Programs with

Explicit Integrality Constraints

The theory reviewed in the previous sections derives cutting planes

from disjunctions. In this context, 0-1 or integrality conditions are viewed

as disjunctions, and the disjunction to be used for deriving a cut usually

applies to the basic yariables.

In this section we discuss a principle for strengthening cutting planes

derived from disjunctions in the case when, besides the disjunction which

applies to the basic variables, there are also integrality constraints on

some of the nonbasic variables. In [14] we first proved this principle for

arbi trary cuts, by using subadditive functions, then applied it to cuts

from disjunctions. Here we prove the principle directly for the latter ca8e,

without recourse to concepts outside the framework of disjunctive programming.

Let a DP be stated in the disjunctive normal form (2.1), and assume

in addition that some components of x are integer-constrained. In order for

the principle that we are going to discuss to be applicable, it is necessary

that each Ahx, hcQ, has a lower bound , say b~. With these additiona l

features, and denoting by S the index set for the components of x (lit =

the constraint set of the DP can be stated as

(7.1) Atx > b~, icQ

x > O

(7.2) V (A1x > a ~)

and

(7.3) X
j  

integer, jC3 1C3

where

(7 . 4) a~~> b ~ , i c Q

~1



Let Q — (l,...,q), and let a~ stand for the j-th column of A
1
, j ai ,

1 s Q.

Theorem 7.1. [14] Define

(7 . 5) M — (m~~R~ E ui~ 2 0, m1 
integer, isQ)

icQ

Then every xcR~ that satisfies (7.1), (7.2), 
(7.3), also satisf ies the

inequality

(7.6) E a~x 2 a0
jcJ i

where

inf rnax et[a~~+ m
1(4-b~ )]

(7.7) a4 —

~~~ e
tat ~ 

€ ~ ~~~ 
=

j ag

and

(7.8) a0 
— mitt eta~

To prove this theorem we will use the following auxiliary result.

Let-ana 7.1. Let eM , — (nt
j j

)~~ jc31. Then for every x c

satisf ying (7.3), ei ther

(7.9) E m14x4 — 0 , Vi eQ
its1 

‘

or

(7.10) V ( E m11x � 1)
IcQ 3aJ1 ~ 1

holds.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof. If the statement is false, there exists ~ satisfying (7.3) and

such that

E E m 1~~ 
< 0 .

leg jas~ ~~

On the other hand, from 2 0 and the def inition of M,

E E m 1
x 20 ,

ieQ jcJ1 ~~

a contradiction. ~j

Proof of Theorem 7.1. We first show that every x which satisfies (7.1),

(7.2) - and (7.3),. also satisfies

(7.2’) V 
[ 
E [a1 + ui1 (a~ -b~)]x + E a1x � a~] -

icQ j€31 ~ ~ 1CJ2 
~

for any set of in
1 

eM , j cJ1. To see this , write (6.2’) as

(7,2”) V ( E a1x + (a~ -b~) t in
1 

x 
~jag jcj i i  jail 

i i

From Lenuna 7.1, either (7.9) or (7.10) holds for every x satisfying (7.3).

If (7.9) holds, then (7.2”) is the same as (7.2) which holds by assumption.

If (7.10) holds, there exists kcQ such that E m.~ x 4 — 1 + X for some X 2 0.
jeJ1 

1 .~
But then the k-th term of (7.2”) becomes

E 
k 

~ 
b~ - X(a1~-b~).1 1

which is satisfied since X(a~ -b~) ~ 
0 and x satisfies (7.1). This proves

that every feasible x satisfies (7.2’).

Applying to (7.2’) Theorem 3.1 then produces the cut (7.6) with

coeff icients def ined by (7.7), (7.8). Taking the infirnun over M is justified



by the fact that (7.6) is valid with as in (7.8), as in (7.7) for

jaJ 2, and

i i  I I
a1 — max 8 [a1 +

ieQ 
•.1

for j a for arbitrary cM.

Corollary 7.1.1. [14]. Let the vectors o~, icQ, satisfy

(7.11) a
i(a~~_ b l) = 1, a~a~ > 0

Then every xeR” that satisfies (7.1), (7.2) and (7.3), also satisf ies

(7.6’) E ~
j
X 

~ 
1

ii”

where
i i
a a , + m1min ruax , jcJ 1

meM ieQ a a 0
( 7 7 1

) 

~j 
— i i  .

max —j--
~i€Q aa 0

Proof. Given any c?, i c Q ,  satisfying (7.11) , if we apply Theorem 7.1

by setting = (Oi/clal ) i cQ, in (7.7) and (7.8), we obtain the cut (7. 6 ’) ,

with defined by (7.7 ’), j cJ. II
Note that the cut-strengthening procedure of Theorem 7.1 requires, in

order to be applicable, the existence of lower bounds on each component of

A
1
x, Vi eQ . This Is a genuine restriction , but one that is satisfied in many

practical instances. Thus, if x is the vector of nonbasic variables associated
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I -with a given basis , assuming that A x is bounded below for each 1

~smounts to assum ing that the basic variables are bounded below and/or

above. In the case of a 0-1 program, for instance , such bounds not only

~~ist but are quite tight.

Example 7.1. ConsIder again the mixed-integer program of example 3.1

(taken from [351), and assume this time that x1 and x2 are 0-1 variables

rather than just integer constrained , i.e., let the constraint set of the

problem be given by

x1 .2 + .4(-x3) + 1.3(-x4) 
— .01(-x5) + .O7 (-x6)

x2 = .9 — .3(-x3) + .4(-x4) 
- .04(-x

5
) + .1 (.-x6)

> 0, j = l,...,6; X
j 

= 0 or 1, j  = l~ 2; x~ integer , .i -
~ ~~4.

This change does not affect the Gomory cuts or the cuts obtainable

from extreme valid inequalities for the group problem, which remain the

~ari~e as listed in example 3.1.

Now let us derive a gut, strengthened by the above procedure, from

the disjunction

Ix  >o !1— 
~ ~ [X2 �l)

~~~
X

2 � 0)

Since x1, -x2 and x2 are bounded below by 0, -l and 0 respectively, we

have

— .2 -.2
a1’ a , b 1 ; a2 = .1 , b 2 

= -.9

1 2Applying Corollary 7 . 1.1, we choose a a (4,1), a — 1, which is easily

seen to satisfy (7.11). Stnce Q has only 2 elements, the set M of (7 5)

~ 

~
• -.-r T t n ---r. - -- . -.
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becomes

M — (in • (m 1,s2) ~m1 
4 in

2 
> 0; ui~, , m~ Integer)

and , since at the optimum ~ may assume equality,

M [in = (m 1, —in1) t i n1 integer)

The coefficients defined by (7 .7’) then become

4 x (— .4)+ lx (—.3)+m1 lx .3 - r n 1

in
1 
i~~~ger 

max 
{ 4 x (-.2)+ 1 x .9 ~~ ~~~~~~~~~ } 

= -7 (with m 1 ~
-

4 x (-l.3)+ 1 x.4+m1 lx (-.4) - i n
1 

-

¼ 
~1 

i~~~ger 
max 

{ 4 x (-.2)+ lx .9 ~ ~ .1 
a -24 (with in

1 
2)

14x .Ol+lx (— .04) 1x.04
= max 

~ 4x (-.2)+lx.9 ‘ i x . i  I =

f4x (-.07)+lx.l lx (-.1) ~ -1inSX 
~ 4x (—.2)+l X.9 ‘ l X . 1 J 

—

~~~ the cut is -

-7x3 
- - 24x4 + .4x5 

- x6 2 1

which has a smaller coeff icient for x4 (and hence is stronger) than 
the

cut derived in example 31 .

In the above example, the integers in
1 

were chosen by inspection.

Derivation of an optimal set of in
1 
requires the solution of a special type

of optimization problem. Two efficient algorithms are available [14 ] for

- ~~~--- ----- —~ -- -‘--- _ _ _ _ _ _ _
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doing this when the multipliers a~ are fixed. Overall optimization would

of course require the simultaneous choice of the and the in1, but a good

method for doing that is not yet available.

The following algorithm, which is one of the two procedures given in

[14], works with fixed a~, I eQ. It first finds optimal noninteger values

for the Ui1, I e Q,  and rounds them down to produce an initial set of integer

vaLues. The optimal integer values, and the corresponding value of

are then found by applying an iterative step k times, where k < I Q t - 1,

IQt being the number of terms in the disjunction from which the cut is

derived.

Algorithm for calculating ,
~~~~~ 

j eJ 1~ of (7.7
’)

Denote

i i  i i — l
(7.12) a1 ~ a1 

, (a a0)

and

(7.13) y E E
IcQ ieQ I

Calculate

* V
(7.14) - , ieQ ’ ,

I

set in
1 

= [mt], i eQ,  define k = - E [mt], and apply k times the following

Iterative Step. Find

+ in + 1) = mm 
~~~~ 

+ m~ + 1)
t ag

awl set

a
5 

‘-in
5 
+ 1 , in

j 
‘~~in1 

, i cQ\ [s)



This algorithm was shown in (141 to find an optimal set of in1 
(and

the associated value of ~~) in k steps , where k = - E [m~ 1 < I Q I - 1
leg

Example 7.2. Consider the integer program with the constraint set

1 7 2 5xl + ~~~ (-x~) - ~~
‘ (_x

6) + ~~
‘ (-x,,)

2 1 1 1.
X2 

a + ~~ (-xi) + 
~~~ 

(_x
6) 

- 
~~~ (-x i)

3 2  4 1
X
3 

— - ~ (-x5
) + 

~ 
(_x

6) 
- 

~~~ (-X
7
)

1 4  5 1
X
4 

= + ~~ (-xi) + 
~~~ 

(_x6 ) - 
~~~ (-x

’
)

2

= 0 or 1, 3 — l,...,4; x
3 ~ 

0 integer , 3 — 5 ,6 ,7.

We wish to generate a strengthened cut from the disjunction

x1 � l  V x2 ?l V x3 � l  V x~~> 1  .

If we apply Theorem 3.1 without strengthening and choose 9
1 

=

I — 1,2,3,4, we obtain the cu t

2 2 1
~~x5 +~~~x6 +~~- x 7 ? 1

whose j—th coefficient is

-a
a max

ie[l,2,3,4) 
—a 10

To apply the strengthening procedure, we note that each x3, 3 — 1,2,3,4

is bounded below by 0. Using a
1 

= 1 (which satisfies (6.11) since

a~’(a~~—b~) = 0
1[l_a

10
_ (_a

i0)] — 1, 1 —  1,2 ,3,4 , and ata~ a
1
(1-a 10

) >0 ,

we obtain

I
- - - - -S ~~- -  -~~~ -—- -- —- — ~~~~~ —— -— ~- —- - - - -
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6 7 6 1 6 2 6 4

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wiN

5
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

miM

Next we apply the above Algorithm for calculating

10 * 23 * 23 * 32 * 11

~~~Forj S: ~~~
= —

~~~~~~~ ; 
m~~~~37~ , in

2
’~~~~’ , ~~~~~~~~~~~~~~~~ ~~~~~~~~~

Thus our starting values are (m~] = 0, [t4] = -1, 1n4] = -i, ~i n i  = 0.

Since k = -(-1) - (-I) = 2, the Iterative step is applied 
twice:

1
I. win [- ~‘

, - 
~~~
, ~~~~, ~~~) 

= - s 2; in
1 

0, a2 = -1+ 1 0,

a
3 

= -1, in4 
= 0.

2. mmn C-~~ ,~~ ,~~
’,
~~
’) “ - i ,  

s_ 1 ; m1
l, m2

0, m3~~~
’1, in4

O

These are the optimal m1, and

1. 1 4 4 1 -
= max [-~~ ,~~~~, 

-
~~~~~~~ 

-~~ ) = - :
~~~

— For 3 = 6; ~j = - 
~~~ [i4] = -1, E4I = -1, (tn~1 0, (mt ] = 0; k 2.

2 1 2 1  1
1. win [ ‘

~~~
, 

- 

~~~~ ~~~~

, 

~~ 

= - ~~~, s = 2; in
1 

— -1, in
2 

= 0, in
3 

= 0, in
4 

= 0

2. ~~~~~~~~~~~~~~~~~~~~~~ 
s =4; ni = - 1 ,m = O ,~~n = 0 , ut = 1 .

4 1 4 1  1

2 * * *

— For 3 ‘1: y = - j’~
, [m 11 = 0 , 

~‘~2’ = — 1 , (in
3

] = -1, [in
4
] -1; k =

1. mm ( 
~~
, 

~~
, 

~~~
, 

~k 

a = 1; m1 
= 1, ni2 

= -1, in
3 

= -1, a4 -1;

—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ • _ _ _ __ _
~~~~~ -1

_
1- —--- - -- ---- _~~~~~_
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2. miii C ~~~‘ ~~~‘ 
& -‘ ~~‘ 

- lU , ~~ 
•- -1 , Lfl~ 0;

7 1 1 7  1
3. ~~~~~~~~~~~~~~~~~~~~~ s = 2 ; rn1~~~i ,~~n9 0, u 3~ - ’- 1, m4

O.

1 1  5 1
~7 max [ 5 , 4 ~~ - 3~~ 5 

~

Thus the strengthened cut Is

-~~~~x5 +~~~~x6 +~~~~x 1 ~ 1

The frequently occurring situatioi? , - -n& ~~ ~~, ~~~~~~ ~~eci~ 1

wention. In this case r~ coef f ic ients  € ~~~~~~~ ~-i~ ~~

(7 . 15) = miii ( (
~ 

-1 <m c> ) , ~ 2
(~a2

where

* 
‘

(7.16) in
0 

-
~

1 ‘-2

with o~ , X~ , 
i = 1,2, defiu~- -~ by (7.12), and the suiallest integer >

The optima l ‘/alue of 
~i 

-a2 is either or 1m~ J, ac.co~ding t~ ~~ether

the minimum in (7.15) is attained for t~ie iirst ci.~ Ll~e s u ~~l ti: ) .fl .

The strengthening procedure discussed in t h i s  section produces the

seemingly paradoxical situation that weakei~ing a disjunction by adding a new

term to it , may result in a strengthening of the cut derived from the

disjunction; or , conversely, dropping a term t~ om a d i s junct ion  may lead to

a weakening of the inequality derived from i~~e d i s jun ct i o n .  For instance ,

if the disjunction used in Example 7.2 is r ep laced by the st ronger one

x1 > 1  V x
2
� l  V x3 > l  ,

then the cut obtained by the strengthening procedure is

1 2 1 -
X
5
+~~~~X6

+~~~~ X 7 
-‘ 1
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which is weaker than the cut of the examp le , since the coefficient of x
6

is 2/5 instead of 1/5. The exp lanation of this strange phenomenon is to

be sought in the fact that the strengthening procedure uses the lower bounds

on each term of the disjunction. In I~:-~anp1e 7.2, besides the disjunction

2 1 V x
2 > 1 V > 1 V x

4 � 1, the procedure also uses the information
that x1 ~ 

0, i = 1,2,3,4. When the above disjunction is strengthened by

omitting the term x
4 ~ 

1, then the procedure does not any n~ re use the infor-

mation that x
4 > 0.

8. Some Frequently Occurr~~~~Disj~~~tions

- As mentioned earlier , one of the main advantages of the disjunctive

programming approach is that it can make full use of the special structure

inherent in many combinatorial problems . In [ 8], [ 9] cutting planes are
derived from the logical conditi~ u5 of the net partitioning problem , the

linear comp lementarity problem , the two forms of representat ion for  nonconvex

separable program s, etc. More general ~omp lei~~~i~ d r I  ty prob L.ns are discussed

in [33], [34]. Here we illustrate the procedure on the frequentl y occurring

logical condition (where x~ 0 integer , I € Q)

(8.1) E x~ = 1 ,
icQ

often called a multip le choice constraint.

If all the problem constraints are of this form, we have a set par-

titioning problem. But the cut that we derive uses on1y one condition

(8.1), so it applies to arbitrary integer programs with at least one

equation (8.1). It also applies to mixed-integer programs, provided the

variables x1, i e Q ,  are integer-constrained .

_ _  _ _ _
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Let 1 and J be the index sets for the basic and nonbasic variables in

a basic feasible noninteger solution of the loris

(8.2) x
1 

a10 
+ E a

13
(-x

3
) , i I I

In [8], [ 9 1 , several cutting planes are derived from the disjunction

- x = 1
V
it~ Xn 

= 0, VhsQ\C 11

Here we describe another cut , which in most cases turns out to be

stronger than those mentioned above. It is derived from the disjunction

(8.3) ~ x~ = 0 V E x1 
= 0

i€~l 
1cQ2

clearly valid for any partition (Q1,Q 2) of Q in 
the sense of being satisfied

by every integer x satisfying (8.IL

Deno ting

(8.4) = E a~3 
, k 1,2; 3 €Ju(0)

(8.3) can be written as

~~~~~~~~ ::~} ~ 4 i~~

which implies the disjunction

(8.5) E > 8
1 

~ E 8
2 > 8

2

jeJ\Q1 ~ ~ 
0 jcJ\Q2 ~
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with > 0, k = 1,2 Note that once the sets ~ flQ~~, k = 1,2, are chosen

the sets and J f l Q 2 can be “optimized ,” in the sense of putting an

index 3 eJflQ into Q1 if (8~/8~) > (
~~/8~

), and in Q2 othe rwise. Using

this device while applying Theorem 3.1 to (8.5) with multipliers —

k — l ,2,we obtain the cut

(8.6) E 
~ 

1

with coefficients

max

{

~~~~,~~~~

} 

, JeJ\Q
- 8~~~

(8.7) =

I I l  2 )

max 0 , miii , —4
~~~~ 

, 3 c J f l Q

I.. 18 o 8 oJ

We now apply the strengthening procedure of section 7 to the coefficients

J\Q (the coefficients indexed by JflQ can usually not be further

strengthened). This of course assumes that all x 3, 3 eJ\Q, are integer
k kconstrained. A lower bound on E ~ x. is 8o - 1, for k = 1,2, since

- 
3

E x~ = + E 8
k(_x ) < 1 , k a 1,2.

iex rQk

The multipliers = 1, k = 1,2, satisfy condition (7.11) of Corollary 7.1.1,

since

- (8~ 
- 1)] = 1, 0, k = 1,2 ,

and thus the 3-tb coefficient of the strengthened cut becomes (Corollary 7.1.1) 

_ _  J
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= miii max 
~ k ‘asH ks[l,2) 8o

with N defined by (7.5) , wi th IQI = 2 . App ly ing the closed form solut ion (7 .15)

to the minimization problem involved in calculating (in the special case of a

disjunction with only two terms), we obt ain

kk k kk- l  1a , X~ (a B~) = .—~~~ , k =1,2,

and hence

- 
= mm 

{

~~~~~~~ m~~> ~~

where

2 1 1 2
‘8 8’ * 

— 

-

0 1 2

We have thus proved

Theorem 8.1. If (8.2> is a basic feasible nonunteger solution of the

linear program associated with an integer program whose variables have to

satisfy (8.1), then for any partition (IflQ1, I flQ 2) of the set IflQ, the

inequality (8.6) is a valid cut, with coefficients

(1 2~~
max 0 , mm <~~~

4 
, .4

~~~~~~~ 
, J e J f l Q

[8~ 80J
(8.9) 8 =

18
1 
+ <m*> 8

2 
- [m*]

miii 1 ‘ 2 j € J \ Q

I 8o 8o

~
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where the k = 1,2, 3 eJ , are defined by (8.4) and m is given by (8.8).

We illustrate this cut on a set partitioning problem, which is a

special case of the Theorem.

Example 8.1. Consider the set partitioning problem whose cost vector

is c = (5,4,3,2,2,3,1,1,1,0) and whose coefficient matrix is given in Table 8.1,

1 2 3 4 5 6 7 8 9 10
1 1 1 1 - 1-

2 1 1  1
3 1 1  1 1 1
4 i i i  1

5 1 1 1 1  1 1

Table 8.1

The linear programming optimum is obtained for x
4 

= x8 x9 
= ~~~, x~, =

x10 = 1, and x
3 

= 0 for all other 3. The associated system (8.2) is shown

in the form of a simplex tableau in Table 8.2 (artificial variables have been

removed).

1 -x1 -x6 -x3 -x
5 -x2

x0 —2 5 2 1 1 3

x~0 1 1 0 0 0 1

1 1 2 2 1 1
X

8 ~ ~~ 3 3 3 3

2 1 1 1 1 2
X

7 ~ 3 3 3 3

1 1 2 2 1 1
X
4 3~ 

=3 =5 3 ~3 3
1 2 2 1 1 2
3 3 3 ~3 3 ~3

Table 8.2 

- --~~~~~~~~~~~~~~-~~~~ -
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We choose the disjunction corresponding to row S of the matr ix  shown in

Table 8.1, which is of the form (8.1), with Q [3 ,4 , 5 , 6 ,8 , 9) .

We define IflQ1 
= (4,8), I f l Q 2 = (9 1, and we have

3— 1  3= 6 3=3 3=5 3= 2 3= 0

1 2 0 a a
3 3 3

2 2  2 1 1 2 1
3 _ 3 3 3 3

Since J f l Q  = (3 ,5 ,6) ,  we need the values m~ for 3 € J \ Q  (1,2) .

They are m~ (l) = 4, m~(2) = - 4. Hence

= m in {42~~

’

~~~
4
~~~°} 

=

= min~~~~0 , max 

~-r- ’ —f-~’ (= 0

83 
— mm 0 , max —i- , -r— =

I, 1 3  3 , )  

---~~- -- ——- -  ~~~~~~ - —- _-~~~~~~
-- -



1 0
85 mm <~ 0 , max ~~~~~~~~~~~~~~~~~~~~~~~~~ 0

f~~~~~~~~
+

~~~~~ = 4 = (~ 1) )

82 a n u 1~m~~ 2 
~ —

~~

------

~~~~~~~~

“ = 1

S

and we obtain the cut

fx 1 +x 2 �

-or

1 -x1 -x6 -x3 -x
5 -x2

S r~
-
~ 

0 0 0 _lJ

which is considerably stronger than the traditional cuts that one can

derive from Table 8.2, and it actuall y implies that the nonbasic variable x2

has to be 1 in any integer solution.

Dual cutting plane methods have been found reasonably successful on

set partitioning problems. Using stronger cuts can only enhance the

eff iciency of such methods , since the computational cost of the cut (8.9)

is quite modest.

- - - i - ., ‘

I 

-~ 

-
.- -

~

- -

~~~

. -  

~~~~~
-

- - - -i -

- 
IurH ~~~~~~~~~~~~~~~ 
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9. Combining Cut t ing Planes ~tith Branch and Bound

The disjunctive prograuzuung approach offers various ways of combining

branch and bound with cutting planes , some of which are currently the

object of computational testing . Here we discuss one feature which seems

to us crucial.

For any problem P, let v(P ) deno te the value of P (i.e., of an optimal

solution to F).

• Suppose we are using branch and bound to solve a mixed-integer 0-1

program P , stated as a maximization problem. If fP~}j5Q 
is the set of

active subproblems (active n:des of the search tree) at a given stage of

the procedure and v ( P . )  is the available upper bound on v(Pi) (assume, for

the sake of simplicity, that v ( P .)  = v(LP.), where LP. is the linear program

associated with Pt). then max v(P~) is an upper bound on v(P). Also ,
i SQ

v(P) , th e value of the best  in te~~ r s o l u t i o n found up to the stage we are

con s ider ing , is of course a lower bound on v(P); i.e., at any stage in the

procedure

(9.1) v(P) < v( P ) < max v(P~ )
IcQ

Hence the importance of finding good bounds for both sides of (9.1).

It is a crucial feature of the approach reviewed here that it can be

used to derive a cutting plane from the optimal simplex tableaus associated

with the subproblems LP
i
, ieQ, which provides an upper bound on v(P) at least

as good as , and often be t t e r  than max v(P . ) .
icQ

Let the linear progr am LI’ associated With the mixed-integer 0-1 program

P have an optima l solution of the form

(9.2) X
h 

— ah O + Z a
h3

(_x
3

) . hcIU (0)
I

A
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where I and J are the index sets for the basic and nonbasic variables

respec tively, and let I~ and be the respective index sets for the integer

constrained variables. Here ahO 0, he - I, and ahO < 1, h c I~ . Further,

since P is a maximization problem and the solution (9.2) is optimal, 
~~~ 

> 0,

3

Now let [
~kJk€Q 

be the set of active subproblems, and for keQ , let the optimal

solution to LPk, the linear program associated with 
~k’ be of the form

~
93

~k 
1
~h 

= a~ 0 + 
3~~

k 
a~3

(-x
3
) ~ h Ikuto) ~

where 1k, ~
k are defined ~-~ith respect to LPk 

the same way as I , J

with respect to LP. Again a~ 3 ~ 
0 , Vj e - 3k , since each LPk is a maximization

problem.

In order to derive a valid cutting plane from 
~
9•3

~k’ k c Q ,  we view

the branching process as the imposition of the disjunction

(D
k
x a d ~

(9.4) kcQ ( A x > b

- \ x> o

where Ax > b stand s for the system

E (-a~~ ) x . > -a~~ , h e I

E a
hJ
x
l 

> a~~ - 1 , h c Il

expressing the conditions X
h � 0, h € I , x.~ < I, h e  I~ , while each

Dkx > d~ is composed o~ inequalities of the form
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E a
13
x
3 ~ 

a
10

or

E (_ a
ij )x

3 ~~ 
1 - a~~

J J

corresponding to the conditions x~ < 0 or x~ > 1 whose totality , together

with Ax � b , x > 0, defines

Now consider the cut derived from (9.4) on the basis of Theorem 3.1,

with the optimal dual variables (obtained by solving LP
k) 

used as the

multipliers 8
k
, keQ. If for kcQ we denc~ e by (u

k
,v
k) the optimal dual

vector associated with the k-th term of (9.4 md

(9 5) k 
= uY + v~A cr~ ukd~ + v

kb

and if c~ > 0 , k e Q ,  then according to Theorem 3.1 , the inequality

k

(9.6)  E (max —~~) x , > 1
j e-J k€ Q 

~o

is satisfied by every x satisfying (9.4), i.e., by every feasible integer

solution. The condition > 0 , k e - Q ,  amounts to requiring that V(LPk) < v(LP ) ,

i.e., that the “branching cons traints ” D~’x � d~ force v(LP ) strictly below

v(LP), VkeQ. This is a necessary and sufficient condition for the procedure

discussed here to be applicable. Should the condition not be satisfied for

some k c Q ,  one can use a different objective function for LP
k 

than for the

rest of the subprobleins — but we omit discussing this case here . Note that ,

since b < 0, v
kb < 0, Yk € Q ,  and thus > 0 implies u

k
d~ > 0 , Vk cQ.

Since the multipliers (u
k
,v
k
) are optima l solutions to the l inear

programs dual to LPk, k c Q ,  they maximize the right hand side coefficient
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k k k
of each inequality ~ x > underlying the cut (9.6) subject to the

condition that cr~ ~ 
a03, Vi tJ .

We now proceed to strengthen the inequality (9.6) via the procedure of

section 7. To do this , we have to detive lower bound s on or kx , k eQ. We

have

k k k k  k k
- u ( D x - d 0) + v ( A x - b )

k k  k k
> u (D x - d 0) > -u e

where e = (l ..., l) .  Thc first inequality holds since Ax - b > 0 for all x

satisfying (9.4 ) ,  while the second one follows from the fact that each

inequality of the system Dkx - d~ > 0 is either of the form -x1 
> 0 or of the

form x
1 

- 1 > 0, and in both cases -l is a lower bound on the value of the

left hand side. Thus

(9.7) k 
- uke , k € Q 

-

holds for every x satisfying (9.4). Note that u1
~d~ > 0 implies u

k # 0 and

hence k 
> ~ implies u~e > 0, keQ .

We now app ly Corollary 7.1 .1 to the system

k k ko x  � o0 U e  , k s Q

(9.8) x ~ 0

k kV (Q- x 2 ~ )keQ

integer , i €

We choose cr1~ = l/u ke , k c Q ,  which satisfies condition (7.11) of the

Corollary:

I

- ~~~~~—~~~~~~~~~~~~~~~~
---

~~--~~~~~~~ — -
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(l/ uke)[a~ - (or1
~ - u~

’
~e) J  = 1 , (l/u ke)a~ > 0

The strengthened cut is then

(9.9) E ~ x � 1
JCJ

with

k k
(a /u e) + m

min max k k 
k

meM keQ a0/u e
(9.10) 8 =

max , jeJ\J 1keQ a0

where

(9.11) M = ( m c R ~~~! E m.K > 0, m.K 
integer , k €Q ) .

keQ

The values of a~ , a~ and u
k
e needed for computing the cut coefficients , are

readily available from the cost row of the simplex tableaux associated with

the optimal solutions to LI’ and LPk, k e Q. If the latter are represented in the

form (9.2) and 
~
9
~
3
~k 

respectively, and if d~ and a3 
denote the j-th column

of Dk and A of (9.4) , while S
k is the row index set for D

k
, k e Q ,  we have

f or all k e Q

k k k  ka
03 

= a
03

- u d
3
- v a

3

k k
= a

03 
- I cJ  flJ

and

a~3 
= 0 + u~ jk ns

since the indices 3 eSk correspond to the slack variables of the system

I 
~~~~~ -• -- - -~~~ - --— ~~~~~~~~—

— - •- ----—--~~~~~~~~~~
— - -

~~
•--, - - -
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< -d~ , whose costs are 0 (note that Sk flJ = 0 by definition). Further ,

for 3~~~ \~
k 

= J f l J k the reduced cost of x
3 

in LPk is 0, hence for all keQ

kk k0 a
03 

- u d
3 

- V a
3

k
— a

03 
- a3 

.

Finally ,
- k k ka

00 
= a

00
- u d

0
- v

k
= a

00 - a 0 , Vk -eQ .

From the above expressions we then have for k eQ,

a - a 1
~

k 03 03

k
(9 .12) a

03 , 3 e - j \ j

k k
a
0 

= a
00 

- a
00

and

k k(9.13) u e = E
- iejkRsk

(since u~ = 0, Vi e S kI\I ).

The representation 
~
93

~k 
of the optima l solution to LP

k 
assumes that

the slack variable 3 € Sk of each “branching constraint” x1 < 0 or x~ ~ 
1

that is tight at the optimum , is among the nonbasic variables with a
03 

> 0.

If one prefers instead to replace these slacks with the corresponding

struc tural variables x~ and regard the latter as “fixed” at 0 or 1, and if

Fk 
denotes the index set of the variables fixed in LPk, the reduced costs

_______________________ - - ------ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a0i, i eJ
k

fly
k 
are then the same, except for their signs, as a03, 3 cJk flSk,

and the only change required in the expressions derived above is to replace

(9.13) by

kk(9.13 ) u e E 
~
a
0~ 

-

iei~rFk

Of course, in order to calculate a cut of the type discussed here, one

needs the reduced costs a
03 

for both the free and the fixed variables.

We have thus proved the following result.

Theorem 9.1. If LP and LPk , k c Q ,  have optimal solutions of the form (9.2)
kand 

~
9
~
3
~k 

respective ly, with a00 > a00, k c Q ,  then every feasible integer

solution satisfies the inequality (9.9), with coefficients defined by (9.10),

(9..11), (9.12) and (9.13) [or (9.13’)].

In the specia l case when IQI  = 2 and LI’1, LP2 are obtained from LP by

imposing x~ < 0 and x~ > 1 respectively (for some i £ I such tha t 0 < a~ 0 < 1),

the definition of 
~~~

. for j € J1 becomes

I (o1Ju1) + < m~ > ( 2
/
2
) - [m*J

(9.10’) = sUn ~ ~ 1 ‘ 2 2 
0

a0/ui 
~

with

2 1  1 2
* 

a 4a0 
-

(9 .14) m =o 2 1  1 2
U
iaO 

+ U~cY
0

We now state the property of the cut (9.9) mentioned at the beginning

of this section.

Corollary 9.1.1. Adding the cut (9.9) to the constraints of LP and

performing one dual simplex pivot in the cut row reduces the value of v(LP) 

--~~~~~~-~~~~-- ~~~~~~ --- -~~~~~~-
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from a
00 

to such that

(9.15) 
~oo < max a~0

keQ

k k
Proof. For each k€ Q, a00 

= a00 
- a0 - Now suppose (9.1) is false ,

i.e., 
~~ 

> a~~, VkeQ . Then

— 
= a00 

- €.r~3>0 a03/~ . > a0~ - , VkeQ ,

and hence for all k e Q ,

a0 > m m  a0 /8

(9.16)
sUn a

~j
(a
~

/a
~
)

jeJ~a~ >O

where

• s h
a4 a4

(9.17) —
~~~ 

max
a0 

h€Q a0

The second inequality in (9.16)holdS since the cut (9.9) is a

strengthened vers ion of (9.6), in the sense that

h
a,1

84 < max —
~~~~~~, j€ J .

h€Q a0

Now suppose the minimum in the second inequality of (9.16) is attained

for 3 = t. Since (9.16) holds for all keQ , we then have

cx~ 
> a0~~(a~ /a~

)

~

- - - - --~~ _ _ _  _~~~~~~• - -— - —- •~~~~~- - -~~~~~---- -~~~~~~~~ - . —--- -
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or (since cr~ > 0, > 0),  cr~ > a0~
. But this contradicts the relation

a 
~ 
8o~ 

implied by (9.12). ~

Note that the Corol lary remains true if the strengthened cut (9.9)

is replaced by its weaker counterpart (9.6) . In that case , however , (9.15)

holds with equality. The remarkable fact about the property stated in the

Corollary is that by using the strengthened cut (9.9) one often has (9.15)

satisfied as strict inequality. More precisely, we have the following

Remark 9.1. (9.15) holds as strict inequality if 8
~ 

< a~fa~ , where s

- 
is defined by (9.17), and t by

a
0~ (c~~fa~) = sUn a

03 
(o~ /a~)

jeJ(a >0

Note that for (9.15) to hold as strict inequality the pivot discussed

in the Corollary need not occur on a “strengthened” cut coefficient. All

tha t is needed , is that the coefficient on which the pivot would occur in

case the unstrengthened cut were used , should be “strengthened” (i.e.,

reduced by the strengthening procedure).

The significance of the cut of Theorem9.l is that it concentrates

in the form of a single inequality much of the information generated by

the branch and bound procedure up to the point where it is derived , and

thus makes it possible , if one so wishes , to start a new tree search while

preserving a good deal of fnformation about the earlier one . 

- •
~~~~~~~

---.-- ~~-
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Theorem 9.1 and its Corollary are stated for (pure or mixed) 0-1 programs;

but the 0—1 property (as opposed to integrality) is only used for the

derivation of the lower bounds on D
k
x 
~ 

d~ , k e-Q; hence it only involves those

variables on which branching has occurred . The results are therefore valid

for mixed-integer programs with some 0-1 variables, provided the strengthening

procedure is only used on cuts derived from branching on 0-1 variables.

Example 9.1. Consider the problem in the variables x
3 
> 0, 3

x3 = 0 or 1, 3 = 1,4; x . integer , j = 2 ,3, whose linear progranining relaxation

has the optimal solution shown in Table 8.1.

1 -x3 -x4 
-x
5 

-x6

1.1 2.0 .2 .05 1.17

x1 .2 .4 1.3 — .01 .07

.9 -.3 .4 — .04 .1

Table 9.1

If we solve the problem by branch and bound, using the rules of always

selecting for branching (a) LPk 
with the largest a~ 0, and (b) x~ with the

larges t max [up pena lty, down penalty), we generate the search tree shown

in Fig. 9.1. The optimal solution is x = (0,2,1,0,20,0), with value -1.9,

found at node 6. To prove optimality, we had to generate two more nodes,

i.e., the total number of nodes generated (apart from the starting node) is 

8 . A
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Suppose now tha t af ter genera ting the f irs t four nodes, we wish to use

the available information to derive a cut. At that point there are three

active nodes, associated with LPk, for k = 2 ,3,4. The corresponding reduced

cost coefficients 
4~~~

, j € j
k
, are shown in Table 9.2. The slack variables

of the “branching constraints” x1 < 0, x1 2 1, x4 < 0, and x
4 � 1 are

denoted by x7, x8, x9 and x10 respectively.

k 2 3 4

3 4 8 6 7 9 5 6 3 10 1 6

4. 6.7 5. 1.52 5. 6.3 .1 .82 4. 6.7 5. 1.52

—2.9 .1 —4.6

Table 9.2

--- - - - - • - -- -- - -~~~~~~~ - - - - - -- - - - -- ~~~--- -~~~~~~-- -- ~~~~~~~~~ - -
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• The coefficients a~, c~ and u’~e, extracted from Table 9.2 and the cost

row of Table 9.1, are as follows:

2 2 2 2 2 2 2
k 2: 

~o 
a00 - a00 4; u e = u

1 
= a

08 
5; a3 a03 - a03 -2,

a~~ - a~~ = -6.5, = a05 = .05, = a06 
- a~6 = -.35;

- 3 3 3 3 3 3 3 -  3k -~~~~ = 1; U e = U
7 
+ u

9 
= 11.3; a3 

= 2, a4 = .2, a5 = - .05 , o6 — .35;

4 4 4 4 4 4 4k = 4: a0 = 5.7; u e = u10 = 6.7; a3 = -2, a4 = .2, a5 .05, a6 .35.

The coefficients of the strengthened cut are shown below, where

N = (mncR
3 

Jm 1 + m2 + m3 ~ 
0, mj integer, i = 1,2,3).

- (-2/5) + m1 (2/11.3) + ut2 (—2/6.7) + in
3

83 maIn max 
{ ~~ ‘ 1/11.3 ‘ 5.7/6.7 .I~ 

=

with in (l ,—l,0).

(—6.5/5) + ni
1 (.2/11.3) + in

2 
(.2/6.7) + in

84 = mnlit max 
{ 

— 

‘ 1/11.3 ‘ 5.7/6.7 
~ = .035

with in = (l ,—l ,0)

r .05 -.05 .05 ),~
8

5 
= max -

~~ —i— , —i--. , 
~~~~~ 

.0125

1 — .35 .35 -.35
86 = max —

~~-— , —j-- , -j--
~~
- j . = .35

Adding to the op timal tableau of LP the cut

.75 x3 
+ .035 x

4 
+ .0125 x5 + .35 x6 > 1

1~
-



- — ----~~~~~-——- - - - 
— —

~~• - :_
---— - —

-68-

produces Table 9.3 and the two pivots shown in Tables 9.3 and 9,4 produce

the optimal Tableau 9.5. Thus no further branching is required.

1 -x3 
-x4 -x5 

-x6

x0 1.1 2.0 .2 .05 1.17

.2 .4 1.3 — .01 .07

x2 .9 — .3 .4 — .04 .1

s —1.0 [— .751 — .035 — .0125 — .35

Table 9.3

1 5 -X
4 

-X
5

x0 —1.57 2.67 .106 .01675 1.117

— .333 .533 1.281 [-.016751 -.117

x2 1.3 — .4 .414 -.035 .240

1.33 —1.33 .047 .01675 .467

Table 9.4

1 -s -x4 
-x5 -x6

x0 —1. 9 2.687 1.387 1.0 1.0

x5 20.0 —31.8 -73.0 —60.0 7.0

2.0 —2.0

1.0 1.0

Table 9.5

—

~

---- • -“-- -- -
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10. Disjunctions from Conditiona l Bounds

In solving pure or mixed integer programs by branch and bound , the

most widely used rule for breaking up the feasible set is to choose an

integer-constrained variable x~ whose value a~ 
at the linear programing

optimum is noninteger, and to iin~ose the disjunction (x~ < [a
~ 

1)V (x~ � [at
) + ~) .

It has been observed , however, that in the presence of multiple choice

constraints, i.e., of constraints of the form

E x~ = I
i eQ

it is more efficient to use a disjunction of the form

(E x1 — 0)V (E x~~=0)
ieQ1 ieQ

2

where Q1UQ 2 = Q, Q1flQ 2 = 0, and Q
1 

and Q2 are about equal in size.

This is just one example of a situation where it is possible to branch

so as to fix the values of several variables on each branch. The circumstance

that makes this possible in the above instance is the presence of the

rather tight multiple choice constraint. More generally, a tightly

constrained feasible set makes it possible to derive disjunctions stronger

than the usual dichotomy on a single variable. On the other hand, the feasible

set of any integer program becomes more or less tightly constrained after

the discovery of a “good” solution (in particular , of an optimal solution),

provided that one restricts it to those solutions better than the current

best. Such a “tightly constrained” state of the feasible set can be

expressed in the form of an inequality

lix < T T
— 0

•

•~
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with TI > 0, and with a relatively small iT
~ 

> 0. One way of doing this ,

if the problem is of the form

(P) min(cx~Ax � b, x ~ 
0, x

3 
integer, jeN)

with c integer, and if z~ is the value of the current best integer solution,

is to find a set or multipliers u such that

uk < c , u > 0

and define

= c - uA , ii = z - ub - 1.
0 U

Then multiplying Ax > b by -u and adding the resulting inequality,

- -uAx < - ub, to cx < z~ - I, yields the inequality

TTX < TI
~~~~0

satisfied by every feasible integer x such that cx < z~. Here ii 
~~ 
o, IT > 0,

and the size of it depends on the gap between the upper bound z~ and the

lower bound ub on the value of (P).

Now suppose we have such an inequality lix < ii. Without loss of

general ity, we may assume that > 0, ‘# 3 (by simply deleting the zero

components). Then the following statement holds. [121 .

Theorem 10.1. Let T T C R ~~, li aR, (ii , iT ) >0 , N = [l,...,n), and for

i = l,...,p, 1 < p < n, let Q~CN, Qj  ~ 0 , with

ii — m m  IT
3(i) iaQ~ ~

If the sets 
~~~~ 

i = 1,. ..,p, satisfy the conditions

(10.1) E TT
j(j) 

< T i
j  
, jaN,

iIj€Q1 -

and
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p
(10.2) E 

~~~~ 
> IT ,

then every integer vector x > 0 such that itx < it , satisfies the disjunction 
•

p

(10.3) V (x = 0, JeQ~)i=l

Proof. Every integer x 
~ 

0 which viola tes (10.3) satisfies

(10.4) E x
3 � 1 , i = 1,... ,p. -

3

Multiplying by ‘13(i) the i
th inequality of (10.4) and adding up the

resulting inequalities, one ob tains 
-

_ _ _  _ _  

p
(10.5) ()  lij ( j ) )X

j  2 E u
i—i 3

i= 1

Further,

E u x  
~~~~~~~~~~~~~~~ 

u x
jaN ~~ Je1~JQ~ ~~

i=l

~~J~~~~~j5Q 
[from (10.1)1

- p

� E TI [from (10.5)1
/

> 11 [from (lO.2)1.

Q.E.D.

One way of looking at Theorem 10.1 is as follows. Suppose the constraints

of an integer program which include the inequality inc < i t , were amended

by the additional constraints (10.4).
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From the proof of the Theorem , these inequalities give a lower

bound on TIX which exceeds n~; this contradiction then produces the dis-

junction (10.3). Since the inequalities (10.4) are not actually part of the

problem, we call the bound on iix derived from them a conditional bound,

and the disjunction obtained from such bounds, a disjunction from conditional

bounds.

Example 10.1. The inequality

9x1+8x2+8x3+7x4+7x5+6x61-6x7+5x8+5x9+5x10f4x11+4x12+ 3x13+3x14+3x15+2x16

< 10,

• 

- 
together with the condition x 

~ 
0, x

3 
integer i~ 3, implies the disjunction

(x
3 

0, 3 = 1,2,3,4,5,6,7) V (x
3 

= 0, 3 l ,8,9,lO ,ll ,12 ,l3,l4) V

V ( x
3 

0 , 3 — 2 ,3,8,9 ,10,15,16,17) .

Indeed ,

lT
j(1) inin(9,8,8,7,7,6,6) — 6,

1T
j (2 )  

min[9,5,5,5,4,4,3,3) 3,

iTj (3) — min [8 ,8 ,5 , 5 ,5 , 3 ,2 ,23 2 ,

and (10.1), (10.2) are èatisfied , since 6 + 3 + 2 > 10, while 6 + 3 < 9 (3 1),

6 + 2 < 8  (3 2,3), 6 < 7 ( 3  4,5),  6 < 6  (3 = 6,7), 3 + 2 < 5 ( 3  = 8,9,10),

3 ~ 4 (3 = 11,12), 3 < ~ (j 
= 13,14), 2 < 3 (3 = 15) , 2 < 2 (3 = 16,17).

Next we outline a procedure [12] based on Theorem 10.1 for systematically

generating disjunctions of the type (10.3) from an inequality iix <Ti
0
, with

TT
j 
>0, 3.
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I. Choose some SCN such that

L ii
jcS 3 °

but

jeT

for all TCS , T ~ S. Order S — (j(l),...,j(p)) according to decreasing

values of 1’Tj(i) and go to 2.

2. Set

(jew (u
3 �“j(l)-3

and define recursively

= tieNtu3 2 + i = 2,...,p -

where 6~ = 1 if J CQ.K, 6~ = 0 otherwise. The sets Q1, 1. — l ...,p,

obtained in this way, satisfy (9.1), (9.2).

In the above example, S (7,14,17). If, on the other hand, one

uses S — (5 ,123 (which is also admissible , since ur5 + n12 = 7 + 4 > 10),

one obtains the disjunction

(X
j 

— 0, 3 — l,...,5)V (x
3 

— 0, ~ = 6,...,l2).

A disjunction of the form (10.3) can be used to partition the feasible
thset into p subproblems, the k one of which is constrained by

E ~ 
1, 1. — 1, . . . , k — 1; X

3 
— 0, ~ •

JeQ~ 

-- 

-
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Another way of using a disjunction of the form (10.3) is to derive

cutti ng planes. This has been explore d in the context of set covering

problems (12) and found to yield good results. In particular, let

A — (a~3
) be a 0-1 matrix and consider the set covering problem

• (SC) min[cx tAx 2 e , x
3 

— 0 or 1, jaN)

where e is the vector ot l’ s of approp riate dimension. For every row i

o f A , let

— 
~
jeNta~3 

= 13.

Now suppose a prime cover (a basic feasible integer solution) x is

- known; then = cx is an upper bound on the value of the optimum. If

u is any feasible solution to the dual of the linear pro gramming re l axa-

tion of (SC) , i .e . ,  any vector satisfying A < c, u 20, then setting

ii — c - uA and ii — - ue one obtains an inequality nx 
~ 

ir~ which is

satisfied by every integer solution better than x, and which can therefore

be used to derive a disjunction of form (10.3).

Suppose this is done, and a disjunction (10.3) is at hand, known

to be satisfied by every feasible integer x better than the current best.

Then for each ic(l,...,p3, one chooses a row h(i) of A , such that Nh(i) f l Qi

is “large” - or, conversely, Nh(i)\Qi is “small.
” Clearly (and this is

true for any choice of the indices h(i)), the disjunction (10.3) implies

p 
___________

(10.6) V (2~~ ~~~x 21)

i—i

which in turn implies the inequality

(10.7) Lx >1
jaw 3

— • • • - - - -  -- • - - - - -•
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where
P

w —  U [ N
h j

\ Q 1.
i—l

The class of cutting planes (10.7) obtained in this way was shown

in (12) to include as a proper subclass the Bellmore-Ra t ltff inequalities (16 1

derived from involutory bases. An all integer algorithm which uses these

cutting planes was implemented and tested with good results on set covering

problems with up to 900 variables (see (12] for details).

_ _ _  _ _  _ _  
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